Files
awx/awx/main/management/commands/run_task_system.py
2016-09-27 18:39:07 -04:00

484 lines
19 KiB
Python

#Copyright (c) 2015 Ansible, Inc.
# All Rights Reserved
# Python
import os
import datetime
import logging
import signal
import time
# Django
from django.conf import settings
from django.core.management.base import NoArgsCommand
# AWX
from awx.main.models import * # noqa
from awx.main.queue import FifoQueue
from awx.main.tasks import handle_work_error, handle_work_success
from awx.main.utils import get_system_task_capacity
# Celery
from celery.task.control import inspect
logger = logging.getLogger('awx.main.commands.run_task_system')
queue = FifoQueue('tower_task_manager')
class SimpleDAG(object):
''' A simple implementation of a directed acyclic graph '''
def __init__(self):
self.nodes = []
self.edges = []
def __contains__(self, obj):
for node in self.nodes:
if node['node_object'] == obj:
return True
return False
def __len__(self):
return len(self.nodes)
def __iter__(self):
return self.nodes.__iter__()
def generate_graphviz_plot(self):
def short_string_obj(obj):
if type(obj) == Job:
type_str = "Job"
if type(obj) == AdHocCommand:
type_str = "AdHocCommand"
elif type(obj) == InventoryUpdate:
type_str = "Inventory"
elif type(obj) == ProjectUpdate:
type_str = "Project"
elif type(obj) == WorkflowJob:
type_str = "Workflow"
else:
type_str = "Unknown"
type_str += "%s" % str(obj.id)
return type_str
doc = """
digraph g {
rankdir = LR
"""
for n in self.nodes:
doc += "%s [color = %s]\n" % (
short_string_obj(n['node_object']),
"red" if n['node_object'].status == 'running' else "black",
)
for from_node, to_node, label in self.edges:
doc += "%s -> %s [ label=\"%s\" ];\n" % (
short_string_obj(self.nodes[from_node]['node_object']),
short_string_obj(self.nodes[to_node]['node_object']),
label,
)
doc += "}\n"
gv_file = open('/tmp/graph.gv', 'w')
gv_file.write(doc)
gv_file.close()
def add_node(self, obj, metadata=None):
if self.find_ord(obj) is None:
self.nodes.append(dict(node_object=obj, metadata=metadata))
def add_edge(self, from_obj, to_obj, label=None):
from_obj_ord = self.find_ord(from_obj)
to_obj_ord = self.find_ord(to_obj)
if from_obj_ord is None or to_obj_ord is None:
raise LookupError("Object not found")
self.edges.append((from_obj_ord, to_obj_ord, label))
def add_edges(self, edgelist):
for edge_pair in edgelist:
self.add_edge(edge_pair[0], edge_pair[1], edge_pair[2])
def find_ord(self, obj):
for idx in range(len(self.nodes)):
if obj == self.nodes[idx]['node_object']:
return idx
return None
def get_node_type(self, obj):
if type(obj) == Job:
return "job"
elif type(obj) == AdHocCommand:
return "ad_hoc_command"
elif type(obj) == InventoryUpdate:
return "inventory_update"
elif type(obj) == ProjectUpdate:
return "project_update"
elif type(obj) == SystemJob:
return "system_job"
elif type(obj) == WorkflowJob:
return "workflow_job"
return "unknown"
def get_dependencies(self, obj, label=None):
antecedents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if node == this_ord and lbl == label:
antecedents.append(self.nodes[dep])
else:
if node == this_ord:
antecedents.append(self.nodes[dep])
return antecedents
def get_dependents(self, obj, label=None):
decendents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if dep == this_ord and lbl == label:
decendents.append(self.nodes[node])
else:
if dep == this_ord:
decendents.append(self.nodes[node])
return decendents
def get_leaf_nodes(self):
leafs = []
for n in self.nodes:
if len(self.get_dependencies(n['node_object'])) < 1:
leafs.append(n)
return leafs
def get_root_nodes(self):
roots = []
for n in self.nodes:
if len(self.get_dependents(n['node_object'])) < 1:
roots.append(n)
return roots
class WorkflowDAG(SimpleDAG):
def __init__(self, workflow_job=None):
super(WorkflowDAG, self).__init__()
if workflow_job:
self._init_graph(workflow_job)
def _init_graph(self, workflow_job):
workflow_nodes = workflow_job.workflow_job_nodes.all()
for workflow_node in workflow_nodes:
self.add_node(workflow_node)
for node_type in ['success_nodes', 'failure_nodes', 'always_nodes']:
for workflow_node in workflow_nodes:
related_nodes = getattr(workflow_node, node_type).all()
for related_node in related_nodes:
self.add_edge(workflow_node, related_node, node_type)
def bfs_nodes_to_run(self):
root_nodes = self.get_root_nodes()
nodes = root_nodes
nodes_found = []
for index, n in enumerate(nodes):
obj = n['node_object']
job = obj.job
if not job:
nodes_found.append(n)
# Job is about to run or is running. Hold our horses and wait for
# the job to finish. We can't proceed down the graph path until we
# have the job result.
elif job.status not in ['failed', 'error', 'successful']:
continue
elif job.status in ['failed', 'error']:
children_failed = self.get_dependencies(obj, 'failure_nodes')
children_always = self.get_dependencies(obj, 'always_nodes')
children_all = children_failed + children_always
nodes.extend(children_all)
elif job.status in ['successful']:
children_success = self.get_dependencies(obj, 'success_nodes')
nodes.extend(children_success)
else:
logger.warn("Incorrect graph structure")
return [n['node_object'] for n in nodes_found]
def is_workflow_done(self):
root_nodes = self.get_root_nodes()
nodes = root_nodes
for index, n in enumerate(nodes):
obj = n['node_object']
job = obj.job
if not job:
return False
# Job is about to run or is running. Hold our horses and wait for
# the job to finish. We can't proceed down the graph path until we
# have the job result.
elif job.status not in ['failed', 'error', 'successful']:
return False
elif job.status in ['failed', 'error']:
children_failed = self.get_dependencies(obj, 'failure_nodes')
children_always = self.get_dependencies(obj, 'always_nodes')
children_all = children_failed + children_always
nodes.extend(children_all)
elif job.status in ['successful']:
children_success = self.get_dependencies(obj, 'success_nodes')
nodes.extend(children_success)
else:
logger.warn("Incorrect graph structure")
return True
def get_tasks():
"""Fetch all Tower tasks that are relevant to the task management
system.
"""
RELEVANT_JOBS = ('pending', 'waiting', 'running')
# TODO: Replace this when we can grab all objects in a sane way.
graph_jobs = [j for j in Job.objects.filter(status__in=RELEVANT_JOBS)]
graph_ad_hoc_commands = [ahc for ahc in AdHocCommand.objects.filter(status__in=RELEVANT_JOBS)]
graph_inventory_updates = [iu for iu in
InventoryUpdate.objects.filter(status__in=RELEVANT_JOBS)]
graph_project_updates = [pu for pu in
ProjectUpdate.objects.filter(status__in=RELEVANT_JOBS)]
graph_system_jobs = [sj for sj in
SystemJob.objects.filter(status__in=RELEVANT_JOBS)]
graph_workflow_jobs = [wf for wf in
WorkflowJob.objects.filter(status__in=RELEVANT_JOBS)]
all_actions = sorted(graph_jobs + graph_ad_hoc_commands + graph_inventory_updates +
graph_project_updates + graph_system_jobs +
graph_workflow_jobs,
key=lambda task: task.created)
return all_actions
def get_running_workflow_jobs():
graph_workflow_jobs = [wf for wf in
WorkflowJob.objects.filter(status='running')]
return graph_workflow_jobs
def do_spawn_workflow_jobs():
workflow_jobs = get_running_workflow_jobs()
for workflow_job in workflow_jobs:
dag = WorkflowDAG(workflow_job)
spawn_nodes = dag.bfs_nodes_to_run()
for spawn_node in spawn_nodes:
# TODO: Inject job template template params as kwargs.
# Make sure to take into account extra_vars merge logic
kv = {}
job = spawn_node.unified_job_template.create_unified_job(**kv)
spawn_node.job = job
spawn_node.save()
can_start = job.signal_start(**kv)
if not can_start:
job.status = 'failed'
job.job_explanation = "Workflow job could not start because it was not in the right state or required manual credentials"
job.save(update_fields=['status', 'job_explanation'])
job.socketio_emit_status("failed")
# TODO: should we emit a status on the socket here similar to tasks.py tower_periodic_scheduler() ?
#emit_websocket_notification('/socket.io/jobs', '', dict(id=))
def rebuild_graph(message):
"""Regenerate the task graph by refreshing known tasks from Tower, purging
orphaned running tasks, and creating dependencies for new tasks before
generating directed edge relationships between those tasks.
"""
# Sanity check: Only do this on the primary node.
if Instance.objects.my_role() == 'secondary':
return None
inspector = inspect()
if not hasattr(settings, 'IGNORE_CELERY_INSPECTOR'):
active_task_queues = inspector.active()
else:
logger.warn("Ignoring celery task inspector")
active_task_queues = None
do_spawn_workflow_jobs()
all_sorted_tasks = get_tasks()
if not len(all_sorted_tasks):
return None
active_tasks = []
if active_task_queues is not None:
for queue in active_task_queues:
active_tasks += [at['id'] for at in active_task_queues[queue]]
else:
logger.error("Could not communicate with celery!")
# TODO: Something needs to be done here to signal to the system
# as a whole that celery appears to be down.
if not hasattr(settings, 'CELERY_UNIT_TEST'):
return None
running_tasks = filter(lambda t: t.status == 'running', all_sorted_tasks)
waiting_tasks = filter(lambda t: t.status != 'running', all_sorted_tasks)
new_tasks = filter(lambda t: t.status == 'pending', all_sorted_tasks)
# Check running tasks and make sure they are active in celery
logger.debug("Active celery tasks: " + str(active_tasks))
for task in list(running_tasks):
if (task.celery_task_id not in active_tasks and not hasattr(settings, 'IGNORE_CELERY_INSPECTOR')):
# NOTE: Pull status again and make sure it didn't finish in
# the meantime?
task.status = 'failed'
task.job_explanation += ' '.join((
'Task was marked as running in Tower but was not present in',
'Celery, so it has been marked as failed.',
))
task.save()
task.websocket_emit_status("failed")
running_tasks.pop(running_tasks.index(task))
logger.error("Task %s appears orphaned... marking as failed" % task)
# Create and process dependencies for new tasks
for task in new_tasks:
logger.debug("Checking dependencies for: %s" % str(task))
try:
task_dependencies = task.generate_dependencies(running_tasks + waiting_tasks)
except Exception, e:
logger.error("Failed processing dependencies for {}: {}".format(task, e))
task.status = 'failed'
task.job_explanation += 'Task failed to generate dependencies: {}'.format(e)
task.save()
task.websocket_emit_status("failed")
continue
logger.debug("New dependencies: %s" % str(task_dependencies))
for dep in task_dependencies:
# We recalculate the created time for the moment to ensure the
# dependencies are always sorted in the right order relative to
# the dependent task.
time_delt = len(task_dependencies) - task_dependencies.index(dep)
dep.created = task.created - datetime.timedelta(seconds=1 + time_delt)
dep.status = 'waiting'
dep.save()
waiting_tasks.insert(waiting_tasks.index(task), dep)
if not hasattr(settings, 'UNIT_TEST_IGNORE_TASK_WAIT'):
task.status = 'waiting'
task.save()
# Rebuild graph
graph = SimpleDAG()
for task in running_tasks:
graph.add_node(task)
for wait_task in waiting_tasks[:50]:
node_dependencies = []
for node in graph:
if wait_task.is_blocked_by(node['node_object']):
node_dependencies.append(node['node_object'])
graph.add_node(wait_task)
for dependency in node_dependencies:
graph.add_edge(wait_task, dependency)
if settings.DEBUG:
graph.generate_graphviz_plot()
return graph
def process_graph(graph, task_capacity):
"""Given a task dependency graph, start and manage tasks given their
priority and weight.
"""
leaf_nodes = graph.get_leaf_nodes()
running_nodes = filter(lambda x: x['node_object'].status == 'running', leaf_nodes)
running_impact = sum([t['node_object'].task_impact for t in running_nodes])
ready_nodes = filter(lambda x: x['node_object'].status != 'running', leaf_nodes)
remaining_volume = task_capacity - running_impact
logger.info('Running Nodes: %s; Capacity: %s; Running Impact: %s; '
'Remaining Capacity: %s' %
(str(running_nodes), str(task_capacity),
str(running_impact), str(remaining_volume)))
logger.info("Ready Nodes: %s" % str(ready_nodes))
for task_node in ready_nodes:
node_obj = task_node['node_object']
# NOTE: This could be used to pass metadata through the task system
# node_args = task_node['metadata']
impact = node_obj.task_impact
if impact <= remaining_volume or running_impact == 0:
node_dependencies = graph.get_dependents(node_obj)
# Allow other tasks to continue if a job fails, even if they are
# other jobs.
if graph.get_node_type(node_obj) == 'job':
node_dependencies = []
dependent_nodes = [{'type': graph.get_node_type(node_obj), 'id': node_obj.id}] + \
[{'type': graph.get_node_type(n['node_object']),
'id': n['node_object'].id} for n in node_dependencies]
error_handler = handle_work_error.s(subtasks=dependent_nodes)
success_handler = handle_work_success.s(task_actual={'type': graph.get_node_type(node_obj),
'id': node_obj.id})
start_status = node_obj.start(error_callback=error_handler, success_callback=success_handler)
if not start_status:
node_obj.status = 'failed'
if node_obj.job_explanation:
node_obj.job_explanation += ' '
node_obj.job_explanation += 'Task failed pre-start check.'
node_obj.save()
continue
remaining_volume -= impact
running_impact += impact
logger.info('Started Node: %s (capacity hit: %s) '
'Remaining Capacity: %s' %
(str(node_obj), str(impact), str(remaining_volume)))
def run_taskmanager():
"""Receive task start and finish signals to rebuild a dependency graph
and manage the actual running of tasks.
"""
def shutdown_handler():
def _handler(signum, frame):
signal.signal(signum, signal.SIG_DFL)
os.kill(os.getpid(), signum)
return _handler
signal.signal(signal.SIGINT, shutdown_handler())
signal.signal(signal.SIGTERM, shutdown_handler())
paused = False
task_capacity = get_system_task_capacity()
last_rebuild = datetime.datetime.fromtimestamp(0)
# Attempt to pull messages off of the task system queue into perpetuity.
#
# A quick explanation of what is happening here:
# The popping messages off the queue bit is something of a sham. We remove
# the messages from the queue and then immediately throw them away. The
# `rebuild_graph` function, while it takes the message as an argument,
# ignores it.
#
# What actually happens is that we just check the database every 10 seconds
# to see what the task dependency graph looks like, and go do that. This
# is the job of the `rebuild_graph` function.
#
# There is some placeholder here: we may choose to actually use the message
# in the future.
while True:
# Pop a message off the queue.
# (If the queue is empty, None will be returned.)
message = queue.pop()
# Parse out the message appropriately, rebuilding our graph if
# appropriate.
if (datetime.datetime.now() - last_rebuild).seconds > 10:
if message is not None and 'pause' in message:
logger.info("Pause command received: %s" % str(message))
paused = message['pause']
graph = rebuild_graph(message)
if not paused and graph is not None:
process_graph(graph, task_capacity)
last_rebuild = datetime.datetime.now()
time.sleep(0.1)
class Command(NoArgsCommand):
"""Tower Task Management System
This daemon is designed to reside between our tasks and celery and
provide a mechanism for understanding the relationship between those tasks
and their dependencies.
It also actively prevents situations in which Tower can get blocked
because it doesn't have an understanding of what is progressing through
celery.
"""
help = 'Launch the Tower task management system'
def handle_noargs(self, **options):
try:
run_taskmanager()
except KeyboardInterrupt:
pass