Files
awx/awx/main/scheduler/dag_simple.py
Matthew Jones 4ced911c00 Implementing models for instance groups, updating task manager
* New InstanceGroup model and associative relationship with Instances
* Associative instances between Organizations, Inventory, and Job
  Templates and InstanceGroups
* Migrations for adding fields and tables for Instance Groups
* Adding activity stream reference for instance groups
* Task Manager Refactoring:
** Simplifying task manager relationships and move away from the
   interstitial hash tables
** Simplify dependency determination logic
** Reduce task manager runtime complexity by removing the partial
   references and moving the logic into the task manager directly or
   relying on Job model logic for determinism
2017-05-10 12:32:54 -04:00

125 lines
3.8 KiB
Python

from awx.main.models import (
Job,
AdHocCommand,
InventoryUpdate,
ProjectUpdate,
WorkflowJob,
)
class SimpleDAG(object):
''' A simple implementation of a directed acyclic graph '''
def __init__(self):
self.nodes = []
self.edges = []
def __contains__(self, obj):
for node in self.nodes:
if node['node_object'] == obj:
return True
return False
def __len__(self):
return len(self.nodes)
def __iter__(self):
return self.nodes.__iter__()
def generate_graphviz_plot(self):
def short_string_obj(obj):
if type(obj) == Job:
type_str = "Job"
if type(obj) == AdHocCommand:
type_str = "AdHocCommand"
elif type(obj) == InventoryUpdate:
type_str = "Inventory"
elif type(obj) == ProjectUpdate:
type_str = "Project"
elif type(obj) == WorkflowJob:
type_str = "Workflow"
else:
type_str = "Unknown"
type_str += "%s" % str(obj.id)
return type_str
doc = """
digraph g {
rankdir = LR
"""
for n in self.nodes:
doc += "%s [color = %s]\n" % (
short_string_obj(n['node_object']),
"red" if n['node_object'].status == 'running' else "black",
)
for from_node, to_node, label in self.edges:
doc += "%s -> %s [ label=\"%s\" ];\n" % (
short_string_obj(self.nodes[from_node]['node_object']),
short_string_obj(self.nodes[to_node]['node_object']),
label,
)
doc += "}\n"
gv_file = open('/tmp/graph.gv', 'w')
gv_file.write(doc)
gv_file.close()
def add_node(self, obj, metadata=None):
if self.find_ord(obj) is None:
self.nodes.append(dict(node_object=obj, metadata=metadata))
def add_edge(self, from_obj, to_obj, label=None):
from_obj_ord = self.find_ord(from_obj)
to_obj_ord = self.find_ord(to_obj)
if from_obj_ord is None or to_obj_ord is None:
raise LookupError("Object not found")
self.edges.append((from_obj_ord, to_obj_ord, label))
def add_edges(self, edgelist):
for edge_pair in edgelist:
self.add_edge(edge_pair[0], edge_pair[1], edge_pair[2])
def find_ord(self, obj):
for idx in range(len(self.nodes)):
if obj == self.nodes[idx]['node_object']:
return idx
return None
def get_dependencies(self, obj, label=None):
antecedents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if node == this_ord and lbl == label:
antecedents.append(self.nodes[dep])
else:
if node == this_ord:
antecedents.append(self.nodes[dep])
return antecedents
def get_dependents(self, obj, label=None):
decendents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if dep == this_ord and lbl == label:
decendents.append(self.nodes[node])
else:
if dep == this_ord:
decendents.append(self.nodes[node])
return decendents
def get_leaf_nodes(self):
leafs = []
for n in self.nodes:
if len(self.get_dependencies(n['node_object'])) < 1:
leafs.append(n)
return leafs
def get_root_nodes(self):
roots = []
for n in self.nodes:
if len(self.get_dependents(n['node_object'])) < 1:
roots.append(n)
return roots