Docs improvements (#7660)

* Docs: update sidebar

* Docs: move registry documentation into docs/

* Docs: move rbd_provisioner documentation into docs/

* Docs: move cephfs_provisioner into docs/

* Docs: move local_volume_provisioner documentation into docs/

* Docs: move ambassador.md to docs/ingress_controller/

* Docs: move metallb.md to docs/ingress_controller/

* Docs: move ingress_nginx documentation into docs/

* Docs: move alb_ingress_controller documentation into docs/

* Docs: merge ambassador documentation into docs/ingress_controller/

* Docs: move cert_manager documentation into docs/

* Docs: move bootstrap-os documentation into docs/

* Docs: update file locations in sidebar
This commit is contained in:
Cristian Calin
2021-06-01 17:30:27 +03:00
committed by GitHub
parent 4674b03661
commit 6a2ea94b39
12 changed files with 46 additions and 91 deletions

View File

@@ -0,0 +1,73 @@
# CephFS Volume Provisioner for Kubernetes 1.5+
[![Docker Repository on Quay](https://quay.io/repository/external_storage/cephfs-provisioner/status "Docker Repository on Quay")](https://quay.io/repository/external_storage/cephfs-provisioner)
Using Ceph volume client
## Development
Compile the provisioner
``` console
make
```
Make the container image and push to the registry
``` console
make push
```
## Test instruction
- Start Kubernetes local cluster
See [Kubernetes](https://kubernetes.io/)
- Create a Ceph admin secret
``` bash
ceph auth get client.admin 2>&1 |grep "key = " |awk '{print $3'} |xargs echo -n > /tmp/secret
kubectl create ns cephfs
kubectl create secret generic ceph-secret-admin --from-file=/tmp/secret --namespace=cephfs
```
- Start CephFS provisioner
The following example uses `cephfs-provisioner-1` as the identity for the instance and assumes kubeconfig is at `/root/.kube`. The identity should remain the same if the provisioner restarts. If there are multiple provisioners, each should have a different identity.
``` bash
docker run -ti -v /root/.kube:/kube -v /var/run/kubernetes:/var/run/kubernetes --privileged --net=host cephfs-provisioner /usr/local/bin/cephfs-provisioner -master=http://127.0.0.1:8080 -kubeconfig=/kube/config -id=cephfs-provisioner-1
```
Alternatively, deploy it in kubernetes, see [deployment](deploy/README.md).
- Create a CephFS Storage Class
Replace Ceph monitor's IP in [example class](example/class.yaml) with your own and create storage class:
``` bash
kubectl create -f example/class.yaml
```
- Create a claim
``` bash
kubectl create -f example/claim.yaml
```
- Create a Pod using the claim
``` bash
kubectl create -f example/test-pod.yaml
```
## Known limitations
- Kernel CephFS doesn't work with SELinux, setting SELinux label in Pod's securityContext will not work.
- Kernel CephFS doesn't support quota or capacity, capacity requested by PVC is not enforced or validated.
- Currently each Ceph user created by the provisioner has `allow r` MDS cap to permit CephFS mount.
## Acknowledgement
Inspired by CephFS Manila provisioner and conversation with John Spray

View File

@@ -0,0 +1,122 @@
# Local Storage Provisioner
The [local storage provisioner](https://github.com/kubernetes-incubator/external-storage/tree/master/local-volume)
is NOT a dynamic storage provisioner as you would
expect from a cloud provider. Instead, it simply creates PersistentVolumes for
all mounts under the host_dir of the specified storage class.
These storage classes are specified in the `local_volume_provisioner_storage_classes` nested dictionary.
Example:
```yaml
local_volume_provisioner_storage_classes:
local-storage:
host_dir: /mnt/disks
mount_dir: /mnt/disks
fast-disks:
host_dir: /mnt/fast-disks
mount_dir: /mnt/fast-disks
block_cleaner_command:
- "/scripts/shred.sh"
- "2"
volume_mode: Filesystem
fs_type: ext4
```
For each key in `local_volume_provisioner_storage_classes` a storageClass with the
same name is created. The subkeys of each storage class are converted to camelCase and added
as attributes to the storageClass.
The result of the above example is:
```yaml
data:
storageClassMap: |
local-storage:
hostDir: /mnt/disks
mountDir: /mnt/disks
fast-disks:
hostDir: /mnt/fast-disks
mountDir: /mnt/fast-disks
blockCleanerCommand:
- "/scripts/shred.sh"
- "2"
volumeMode: Filesystem
fsType: ext4
```
The default StorageClass is local-storage on /mnt/disks,
the rest of this doc will use that path as an example.
## Examples to create local storage volumes
1. tmpfs method:
``` bash
for vol in vol1 vol2 vol3; do
mkdir /mnt/disks/$vol
mount -t tmpfs -o size=5G $vol /mnt/disks/$vol
done
```
The tmpfs method is not recommended for production because the mount is not
persistent and data will be deleted on reboot.
1. Mount physical disks
``` bash
mkdir /mnt/disks/ssd1
mount /dev/vdb1 /mnt/disks/ssd1
```
Physical disks are recommended for production environments because it offers
complete isolation in terms of I/O and capacity.
1. Mount unpartitioned physical devices
``` bash
for disk in /dev/sdc /dev/sdd /dev/sde; do
ln -s $disk /mnt/disks
done
```
This saves time of precreating filesystems. Note that your storageclass must have
volume_mode set to "Filesystem" and fs_type defined. If either is not set, the
disk will be added as a raw block device.
1. File-backed sparsefile method
``` bash
truncate /mnt/disks/disk5 --size 2G
mkfs.ext4 /mnt/disks/disk5
mkdir /mnt/disks/vol5
mount /mnt/disks/disk5 /mnt/disks/vol5
```
If you have a development environment and only one disk, this is the best way
to limit the quota of persistent volumes.
1. Simple directories
In a development environment using `mount --bind` works also, but there is no capacity
management.
1. Block volumeMode PVs
Create a symbolic link under discovery directory to the block device on the node. To use
raw block devices in pods, volume_type should be set to "Block".
## Usage notes
Beta PV.NodeAffinity field is used by default. If running against an older K8s
version, the useAlphaAPI flag must be set in the configMap.
The volume provisioner cannot calculate volume sizes correctly, so you should
delete the daemonset pod on the relevant host after creating volumes. The pod
will be recreated and read the size correctly.
Make sure to make any mounts persist via /etc/fstab or with systemd mounts (for
Flatcar Container Linux). Pods with persistent volume claims will not be
able to start if the mounts become unavailable.
## Further reading
Refer to the upstream docs here: <https://github.com/kubernetes-incubator/external-storage/tree/master/local-volume>

View File

@@ -0,0 +1,79 @@
# RBD Volume Provisioner for Kubernetes 1.5+
`rbd-provisioner` is an out-of-tree dynamic provisioner for Kubernetes 1.5+.
You can use it quickly & easily deploy ceph RBD storage that works almost
anywhere.
It works just like in-tree dynamic provisioner. For more information on how
dynamic provisioning works, see [the docs](http://kubernetes.io/docs/user-guide/persistent-volumes/)
or [this blog post](http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html).
## Development
Compile the provisioner
```console
make
```
Make the container image and push to the registry
```console
make push
```
## Test instruction
* Start Kubernetes local cluster
See [Kubernetes](https://kubernetes.io/).
* Create a Ceph admin secret
```bash
ceph auth get client.admin 2>&1 |grep "key = " |awk '{print $3'} |xargs echo -n > /tmp/secret
kubectl create secret generic ceph-admin-secret --from-file=/tmp/secret --namespace=kube-system
```
* Create a Ceph pool and a user secret
```bash
ceph osd pool create kube 8 8
ceph auth add client.kube mon 'allow r' osd 'allow rwx pool=kube'
ceph auth get-key client.kube > /tmp/secret
kubectl create secret generic ceph-secret --from-file=/tmp/secret --namespace=kube-system
```
* Start RBD provisioner
The following example uses `rbd-provisioner-1` as the identity for the instance and assumes kubeconfig is at `/root/.kube`. The identity should remain the same if the provisioner restarts. If there are multiple provisioners, each should have a different identity.
```bash
docker run -ti -v /root/.kube:/kube -v /var/run/kubernetes:/var/run/kubernetes --privileged --net=host quay.io/external_storage/rbd-provisioner /usr/local/bin/rbd-provisioner -master=http://127.0.0.1:8080 -kubeconfig=/kube/config -id=rbd-provisioner-1
```
Alternatively, deploy it in kubernetes, see [deployment](deploy/README.md).
* Create a RBD Storage Class
Replace Ceph monitor's IP in [examples/class.yaml](examples/class.yaml) with your own and create storage class:
```bash
kubectl create -f examples/class.yaml
```
* Create a claim
```bash
kubectl create -f examples/claim.yaml
```
* Create a Pod using the claim
```bash
kubectl create -f examples/test-pod.yaml
```
## Acknowledgements
* This provisioner is extracted from [Kubernetes core](https://github.com/kubernetes/kubernetes) with some modifications for this project.

View File

@@ -0,0 +1,252 @@
# Private Docker Registry in Kubernetes
Kubernetes offers an optional private Docker registry addon, which you can turn
on when you bring up a cluster or install later. This gives you a place to
store truly private Docker images for your cluster.
## How it works
The private registry runs as a `Pod` in your cluster. It does not currently
support SSL or authentication, which triggers Docker's "insecure registry"
logic. To work around this, we run a proxy on each node in the cluster,
exposing a port onto the node (via a hostPort), which Docker accepts as
"secure", since it is accessed by `localhost`.
## Turning it on
Some cluster installs (e.g. GCE) support this as a cluster-birth flag. The
`ENABLE_CLUSTER_REGISTRY` variable in `cluster/gce/config-default.sh` governs
whether the registry is run or not. To set this flag, you can specify
`KUBE_ENABLE_CLUSTER_REGISTRY=true` when running `kube-up.sh`. If your cluster
does not include this flag, the following steps should work. Note that some of
this is cloud-provider specific, so you may have to customize it a bit.
### Make some storage
The primary job of the registry is to store data. To do that we have to decide
where to store it. For cloud environments that have networked storage, we can
use Kubernetes's `PersistentVolume` abstraction. The following template is
expanded by `salt` in the GCE cluster turnup, but can easily be adapted to
other situations:
<!-- BEGIN MUNGE: EXAMPLE registry-pv.yaml.in -->
``` yaml
kind: PersistentVolume
apiVersion: v1
metadata:
name: kube-system-kube-registry-pv
spec:
{% if pillar.get('cluster_registry_disk_type', '') == 'gce' %}
capacity:
storage: {{ pillar['cluster_registry_disk_size'] }}
accessModes:
- ReadWriteOnce
gcePersistentDisk:
pdName: "{{ pillar['cluster_registry_disk_name'] }}"
fsType: "ext4"
{% endif %}
```
<!-- END MUNGE: EXAMPLE registry-pv.yaml.in -->
If, for example, you wanted to use NFS you would just need to change the
`gcePersistentDisk` block to `nfs`. See
[here](https://kubernetes.io/docs/concepts/storage/volumes/) for more details on volumes.
Note that in any case, the storage (in the case the GCE PersistentDisk) must be
created independently - this is not something Kubernetes manages for you (yet).
### I don't want or don't have persistent storage
If you are running in a place that doesn't have networked storage, or if you
just want to kick the tires on this without committing to it, you can easily
adapt the `ReplicationController` specification below to use a simple
`emptyDir` volume instead of a `persistentVolumeClaim`.
## Claim the storage
Now that the Kubernetes cluster knows that some storage exists, you can put a
claim on that storage. As with the `PersistentVolume` above, you can start
with the `salt` template:
<!-- BEGIN MUNGE: EXAMPLE registry-pvc.yaml.in -->
``` yaml
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: kube-registry-pvc
namespace: kube-system
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: {{ pillar['cluster_registry_disk_size'] }}
```
<!-- END MUNGE: EXAMPLE registry-pvc.yaml.in -->
This tells Kubernetes that you want to use storage, and the `PersistentVolume`
you created before will be bound to this claim (unless you have other
`PersistentVolumes` in which case those might get bound instead). This claim
gives you the right to use this storage until you release the claim.
## Run the registry
Now we can run a Docker registry:
<!-- BEGIN MUNGE: EXAMPLE registry-rc.yaml -->
``` yaml
apiVersion: v1
kind: ReplicationController
metadata:
name: kube-registry-v0
namespace: kube-system
labels:
k8s-app: registry
version: v0
spec:
replicas: 1
selector:
k8s-app: registry
version: v0
template:
metadata:
labels:
k8s-app: registry
version: v0
spec:
containers:
- name: registry
image: registry:2
resources:
limits:
cpu: 100m
memory: 100Mi
env:
- name: REGISTRY_HTTP_ADDR
value: :5000
- name: REGISTRY_STORAGE_FILESYSTEM_ROOTDIRECTORY
value: /var/lib/registry
volumeMounts:
- name: image-store
mountPath: /var/lib/registry
ports:
- containerPort: 5000
name: registry
protocol: TCP
volumes:
- name: image-store
persistentVolumeClaim:
claimName: kube-registry-pvc
```
<!-- END MUNGE: EXAMPLE registry-rc.yaml -->
## Expose the registry in the cluster
Now that we have a registry `Pod` running, we can expose it as a Service:
<!-- BEGIN MUNGE: EXAMPLE registry-svc.yaml -->
``` yaml
apiVersion: v1
kind: Service
metadata:
name: kube-registry
namespace: kube-system
labels:
k8s-app: registry
kubernetes.io/name: "KubeRegistry"
spec:
selector:
k8s-app: registry
ports:
- name: registry
port: 5000
protocol: TCP
```
<!-- END MUNGE: EXAMPLE registry-svc.yaml -->
## Expose the registry on each node
Now that we have a running `Service`, we need to expose it onto each Kubernetes
`Node` so that Docker will see it as `localhost`. We can load a `Pod` on every
node by creating following daemonset.
<!-- BEGIN MUNGE: EXAMPLE ../../saltbase/salt/kube-registry-proxy/kube-registry-proxy.yaml -->
``` yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: kube-registry-proxy
namespace: kube-system
labels:
k8s-app: kube-registry-proxy
version: v0.4
spec:
template:
metadata:
labels:
k8s-app: kube-registry-proxy
kubernetes.io/name: "kube-registry-proxy"
version: v0.4
spec:
containers:
- name: kube-registry-proxy
image: gcr.io/google_containers/kube-registry-proxy:0.4
resources:
limits:
cpu: 100m
memory: 50Mi
env:
- name: REGISTRY_HOST
value: kube-registry.kube-system.svc.cluster.local
- name: REGISTRY_PORT
value: "5000"
ports:
- name: registry
containerPort: 80
hostPort: 5000
```
<!-- END MUNGE: EXAMPLE ../../saltbase/salt/kube-registry-proxy/kube-registry-proxy.yaml -->
When modifying replication-controller, service and daemon-set definitions, take
care to ensure *unique* identifiers for the rc-svc couple and the daemon-set.
Failing to do so will have register the localhost proxy daemon-sets to the
upstream service. As a result they will then try to proxy themselves, which
will, for obvious reasons, not work.
This ensures that port 5000 on each node is directed to the registry `Service`.
You should be able to verify that it is running by hitting port 5000 with a web
browser and getting a 404 error:
``` console
$ curl localhost:5000
404 page not found
```
## Using the registry
To use an image hosted by this registry, simply say this in your `Pod`'s
`spec.containers[].image` field:
``` yaml
image: localhost:5000/user/container
```
Before you can use the registry, you have to be able to get images into it,
though. If you are building an image on your Kubernetes `Node`, you can spell
out `localhost:5000` when you build and push. More likely, though, you are
building locally and want to push to your cluster.
You can use `kubectl` to set up a port-forward from your local node to a
running Pod:
``` console
$ POD=$(kubectl get pods --namespace kube-system -l k8s-app=registry \
-o template --template '{{range .items}}{{.metadata.name}} {{.status.phase}}{{"\n"}}{{end}}' \
| grep Running | head -1 | cut -f1 -d' ')
$ kubectl port-forward --namespace kube-system $POD 5000:5000 &
```
Now you can build and push images on your local computer as
`localhost:5000/yourname/container` and those images will be available inside
your kubernetes cluster with the same name.