optimization fix

* WorkflowDAG accepts workflow job template and workflow jobs for which
to build a graph out of the nodes. The optimized query for each is
different. This changeset adds the differing queries for a workflow job.
This commit is contained in:
chris meyers 2018-11-09 14:36:22 -05:00 committed by mabashian
parent 9f3e272665
commit 16a60412cf

View File

@ -1,7 +1,10 @@
# Python
import copy
from awx.main.models import WorkflowJobTemplateNode
from awx.main.models import (
WorkflowJobTemplateNode,
WorkflowJobNode,
)
# AWX
from awx.main.scheduler.dag_simple import SimpleDAG
@ -16,14 +19,19 @@ class WorkflowDAG(SimpleDAG):
def _init_graph(self, workflow_job_or_jt):
if hasattr(workflow_job_or_jt, 'workflow_job_template_nodes'):
workflow_nodes = workflow_job_or_jt.workflow_job_template_nodes
success_nodes = WorkflowJobTemplateNode.success_nodes.through.objects.filter(from_workflowjobtemplatenode__workflow_job_template_id=workflow_job_or_jt.id).values_list('from_workflowjobtemplatenode_id', 'to_workflowjobtemplatenode_id')
failure_nodes = WorkflowJobTemplateNode.failure_nodes.through.objects.filter(from_workflowjobtemplatenode__workflow_job_template_id=workflow_job_or_jt.id).values_list('from_workflowjobtemplatenode_id', 'to_workflowjobtemplatenode_id')
always_nodes = WorkflowJobTemplateNode.always_nodes.through.objects.filter(from_workflowjobtemplatenode__workflow_job_template_id=workflow_job_or_jt.id).values_list('from_workflowjobtemplatenode_id', 'to_workflowjobtemplatenode_id')
elif hasattr(workflow_job_or_jt, 'workflow_job_nodes'):
workflow_nodes = workflow_job_or_jt.workflow_job_nodes
success_nodes = WorkflowJobNode.success_nodes.through.objects.filter(from_workflowjobnode__workflow_job_id=workflow_job_or_jt.id).values_list('from_workflowjobnode_id', 'to_workflowjobnode_id')
failure_nodes = WorkflowJobNode.failure_nodes.through.objects.filter(from_workflowjobnode__workflow_job_id=workflow_job_or_jt.id).values_list('from_workflowjobnode_id', 'to_workflowjobnode_id')
always_nodes = WorkflowJobNode.always_nodes.through.objects.filter(from_workflowjobnode__workflow_job_id=workflow_job_or_jt.id).values_list('from_workflowjobnode_id', 'to_workflowjobnode_id')
else:
raise RuntimeError("Unexpected object {} {}".format(type(workflow_job_or_jt), workflow_job_or_jt))
success_nodes = WorkflowJobTemplateNode.success_nodes.through.objects.filter(from_workflowjobtemplatenode__workflow_job_template_id=workflow_job_or_jt.id).values_list('from_workflowjobtemplatenode_id', 'to_workflowjobtemplatenode_id')
failure_nodes = WorkflowJobTemplateNode.failure_nodes.through.objects.filter(from_workflowjobtemplatenode__workflow_job_template_id=workflow_job_or_jt.id).values_list('from_workflowjobtemplatenode_id', 'to_workflowjobtemplatenode_id')
always_nodes = WorkflowJobTemplateNode.always_nodes.through.objects.filter(from_workflowjobtemplatenode__workflow_job_template_id=workflow_job_or_jt.id).values_list('from_workflowjobtemplatenode_id', 'to_workflowjobtemplatenode_id')
print("workflow id {}".format(workflow_job_or_jt.id))
print("Count of success nodes {}".format(len(success_nodes)))
wfn_by_id = dict()