we can do all the work in one loop

more than saving the loop, we save building the WorkflowDag twice which
makes LOTS of queries!!!

Also, do a bulk update on the WorkflowJobNodes instead of saving in a
loop :fear:
This commit is contained in:
Elijah DeLee 2022-07-01 13:50:38 -04:00 committed by Seth Foster
parent ad08eafb9a
commit 29d91da1d2
No known key found for this signature in database
GPG Key ID: 86E90D96F7184028

View File

@ -30,6 +30,7 @@ from awx.main.models import (
UnifiedJob,
WorkflowApproval,
WorkflowJob,
WorkflowJobNode,
WorkflowJobTemplate,
)
from awx.main.scheduler.dag_workflow import WorkflowDAG
@ -132,69 +133,6 @@ class WorkflowManager(TaskBase):
@timeit
def spawn_workflow_graph_jobs(self, workflow_jobs):
logger.debug(f"=== {workflow_jobs}")
for workflow_job in workflow_jobs:
if workflow_job.cancel_flag:
logger.debug('Not spawning jobs for %s because it is pending cancelation.', workflow_job.log_format)
continue
dag = WorkflowDAG(workflow_job)
spawn_nodes = dag.bfs_nodes_to_run()
if spawn_nodes:
logger.debug('Spawning jobs for %s', workflow_job.log_format)
else:
logger.debug('No nodes to spawn for %s', workflow_job.log_format)
for spawn_node in spawn_nodes:
if spawn_node.unified_job_template is None:
continue
kv = spawn_node.get_job_kwargs()
job = spawn_node.unified_job_template.create_unified_job(**kv)
spawn_node.job = job
spawn_node.save()
logger.debug('Spawned %s in %s for node %s', job.log_format, workflow_job.log_format, spawn_node.pk)
can_start = True
if isinstance(spawn_node.unified_job_template, WorkflowJobTemplate):
workflow_ancestors = job.get_ancestor_workflows()
if spawn_node.unified_job_template in set(workflow_ancestors):
can_start = False
logger.info(
'Refusing to start recursive workflow-in-workflow id={}, wfjt={}, ancestors={}'.format(
job.id, spawn_node.unified_job_template.pk, [wa.pk for wa in workflow_ancestors]
)
)
display_list = [spawn_node.unified_job_template] + workflow_ancestors
job.job_explanation = gettext_noop(
"Workflow Job spawned from workflow could not start because it " "would result in recursion (spawn order, most recent first: {})"
).format(', '.join(['<{}>'.format(tmp) for tmp in display_list]))
else:
logger.debug(
'Starting workflow-in-workflow id={}, wfjt={}, ancestors={}'.format(
job.id, spawn_node.unified_job_template.pk, [wa.pk for wa in workflow_ancestors]
)
)
if not job._resources_sufficient_for_launch():
can_start = False
job.job_explanation = gettext_noop(
"Job spawned from workflow could not start because it " "was missing a related resource such as project or inventory"
)
if can_start:
if workflow_job.start_args:
start_args = json.loads(decrypt_field(workflow_job, 'start_args'))
else:
start_args = {}
can_start = job.signal_start(**start_args)
if not can_start:
job.job_explanation = gettext_noop(
"Job spawned from workflow could not start because it " "was not in the right state or required manual credentials"
)
if not can_start:
job.status = 'failed'
job.save(update_fields=['status', 'job_explanation'])
job.websocket_emit_status('failed')
# TODO: should we emit a status on the socket here similar to tasks.py awx_periodic_scheduler() ?
# emit_websocket_notification('/socket.io/jobs', '', dict(id=))
def process_finished_workflow_jobs(self, workflow_jobs):
result = []
for workflow_job in workflow_jobs:
dag = WorkflowDAG(workflow_job)
@ -211,31 +149,90 @@ class WorkflowManager(TaskBase):
status_changed = True
else:
workflow_nodes = dag.mark_dnr_nodes()
for n in workflow_nodes:
n.save(update_fields=['do_not_run'])
WorkflowJobNode.objects.bulk_update(workflow_nodes, ['do_not_run'])
# If workflow is now done, we do special things to mark it as done.
is_done = dag.is_workflow_done()
if not is_done:
continue
has_failed, reason = dag.has_workflow_failed()
logger.debug('Marking %s as %s.', workflow_job.log_format, 'failed' if has_failed else 'successful')
result.append(workflow_job.id)
new_status = 'failed' if has_failed else 'successful'
logger.debug("Transitioning {} to {} status.".format(workflow_job.log_format, new_status))
update_fields = ['status', 'start_args']
workflow_job.status = new_status
if reason:
logger.info(f'Workflow job {workflow_job.id} failed due to reason: {reason}')
workflow_job.job_explanation = gettext_noop("No error handling paths found, marking workflow as failed")
update_fields.append('job_explanation')
workflow_job.start_args = '' # blank field to remove encrypted passwords
workflow_job.save(update_fields=update_fields)
status_changed = True
if is_done:
has_failed, reason = dag.has_workflow_failed()
logger.debug('Marking %s as %s.', workflow_job.log_format, 'failed' if has_failed else 'successful')
result.append(workflow_job.id)
new_status = 'failed' if has_failed else 'successful'
logger.debug("Transitioning {} to {} status.".format(workflow_job.log_format, new_status))
update_fields = ['status', 'start_args']
workflow_job.status = new_status
if reason:
logger.info(f'Workflow job {workflow_job.id} failed due to reason: {reason}')
workflow_job.job_explanation = gettext_noop("No error handling paths found, marking workflow as failed")
update_fields.append('job_explanation')
workflow_job.start_args = '' # blank field to remove encrypted passwords
workflow_job.save(update_fields=update_fields)
status_changed = True
if status_changed:
if workflow_job.spawned_by_workflow:
schedule_task_manager()
workflow_job.websocket_emit_status(workflow_job.status)
# Operations whose queries rely on modifications made during the atomic scheduling session
workflow_job.send_notification_templates('succeeded' if workflow_job.status == 'successful' else 'failed')
if workflow_job.status == 'running':
spawn_nodes = dag.bfs_nodes_to_run()
if spawn_nodes:
logger.debug('Spawning jobs for %s', workflow_job.log_format)
else:
logger.debug('No nodes to spawn for %s', workflow_job.log_format)
for spawn_node in spawn_nodes:
if spawn_node.unified_job_template is None:
continue
kv = spawn_node.get_job_kwargs()
job = spawn_node.unified_job_template.create_unified_job(**kv)
spawn_node.job = job
spawn_node.save()
logger.debug('Spawned %s in %s for node %s', job.log_format, workflow_job.log_format, spawn_node.pk)
can_start = True
if isinstance(spawn_node.unified_job_template, WorkflowJobTemplate):
workflow_ancestors = job.get_ancestor_workflows()
if spawn_node.unified_job_template in set(workflow_ancestors):
can_start = False
logger.info(
'Refusing to start recursive workflow-in-workflow id={}, wfjt={}, ancestors={}'.format(
job.id, spawn_node.unified_job_template.pk, [wa.pk for wa in workflow_ancestors]
)
)
display_list = [spawn_node.unified_job_template] + workflow_ancestors
job.job_explanation = gettext_noop(
"Workflow Job spawned from workflow could not start because it "
"would result in recursion (spawn order, most recent first: {})"
).format(', '.join(['<{}>'.format(tmp) for tmp in display_list]))
else:
logger.debug(
'Starting workflow-in-workflow id={}, wfjt={}, ancestors={}'.format(
job.id, spawn_node.unified_job_template.pk, [wa.pk for wa in workflow_ancestors]
)
)
if not job._resources_sufficient_for_launch():
can_start = False
job.job_explanation = gettext_noop(
"Job spawned from workflow could not start because it " "was missing a related resource such as project or inventory"
)
if can_start:
if workflow_job.start_args:
start_args = json.loads(decrypt_field(workflow_job, 'start_args'))
else:
start_args = {}
can_start = job.signal_start(**start_args)
if not can_start:
job.job_explanation = gettext_noop(
"Job spawned from workflow could not start because it " "was not in the right state or required manual credentials"
)
if not can_start:
job.status = 'failed'
job.save(update_fields=['status', 'job_explanation'])
job.websocket_emit_status('failed')
# TODO: should we emit a status on the socket here similar to tasks.py awx_periodic_scheduler() ?
# emit_websocket_notification('/socket.io/jobs', '', dict(id=))
return result
def timeout_approval_node(self):
@ -265,18 +262,7 @@ class WorkflowManager(TaskBase):
def _schedule(self):
running_workflow_tasks = self.get_tasks()
if len(running_workflow_tasks) > 0:
self.process_finished_workflow_jobs(running_workflow_tasks)
previously_running_workflow_tasks = running_workflow_tasks
running_workflow_tasks = []
for workflow_job in previously_running_workflow_tasks:
if workflow_job.status == 'running':
running_workflow_tasks.append(workflow_job)
else:
logger.debug('Removed %s from job spawning consideration.', workflow_job.log_format)
self.spawn_workflow_graph_jobs(running_workflow_tasks)
self.timeout_approval_node()