mirror of
https://github.com/ansible/awx.git
synced 2026-01-22 06:58:06 -03:30
Add max concurrent jobs and max forks per ig
The intention of this feature is primarily to provide some notion of max capacity of container groups, but the logic I've left generic. Default is 0, which will be interpereted as no maximum number of jobs or forks. Includes refactor of variable and method names for clarity. instances_by_hostname is an internal attribute of TaskManagerInstances. Clarify when we are expecting the actual TaskManagerInstances object. Unify how we process running tasks and consume capacity. This has the effect that we do less expensive work in after_lock_init and have 1 less loop over all the running tasks. Previously we looped for both building the dependency graph as well as for calculating the starting capacity of all the instances and instance groups. Now we acheive both tasks in the same loop. Because of how this changes the somewhat subtle "do-si-do" of how to initialize the Task Manager models, introduce a wrapper class that tries to take some of that burden off of other areas where we re-use this like in the serializer and the metrics. Also use this wrapper class to handle nicities of how to track capacity consumption on instances and instance groups. Add tests for max_forks and max_concurrent_jobs Fixup tests that use TaskManagerModels to accomodate changes. assign ig before call to consume capacity if we don't do it in that order, then we don't correctly account for the container group jobs we are starting in the middle of the task manager run
This commit is contained in:
parent
65c3db8cb8
commit
86856f242a
@ -113,7 +113,7 @@ from awx.main.utils import (
|
||||
)
|
||||
from awx.main.utils.filters import SmartFilter
|
||||
from awx.main.utils.named_url_graph import reset_counters
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstanceGroups, TaskManagerInstances
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerModels
|
||||
from awx.main.redact import UriCleaner, REPLACE_STR
|
||||
|
||||
from awx.main.validators import vars_validate_or_raise
|
||||
@ -5071,6 +5071,22 @@ class InstanceGroupSerializer(BaseSerializer):
|
||||
label=_('Policy Instance Minimum'),
|
||||
help_text=_("Static minimum number of Instances that will be automatically assign to " "this group when new instances come online."),
|
||||
)
|
||||
max_concurrent_jobs = serializers.IntegerField(
|
||||
default=0,
|
||||
min_value=0,
|
||||
required=False,
|
||||
initial=0,
|
||||
label=_('Max Concurrent Jobs'),
|
||||
help_text=_("Maximum number of concurrent jobs to run on a group. When set to zero, no maximum is enforced."),
|
||||
)
|
||||
max_forks = serializers.IntegerField(
|
||||
default=0,
|
||||
min_value=0,
|
||||
required=False,
|
||||
initial=0,
|
||||
label=_('Max Forks'),
|
||||
help_text=_("Maximum number of forks to execute concurrently on a group. When set to zero, no maximum is enforced."),
|
||||
)
|
||||
policy_instance_list = serializers.ListField(
|
||||
child=serializers.CharField(),
|
||||
required=False,
|
||||
@ -5092,6 +5108,8 @@ class InstanceGroupSerializer(BaseSerializer):
|
||||
"consumed_capacity",
|
||||
"percent_capacity_remaining",
|
||||
"jobs_running",
|
||||
"max_concurrent_jobs",
|
||||
"max_forks",
|
||||
"jobs_total",
|
||||
"instances",
|
||||
"is_container_group",
|
||||
@ -5173,14 +5191,15 @@ class InstanceGroupSerializer(BaseSerializer):
|
||||
# Store capacity values (globally computed) in the context
|
||||
if 'task_manager_igs' not in self.context:
|
||||
instance_groups_queryset = None
|
||||
jobs_qs = UnifiedJob.objects.filter(status__in=('running', 'waiting'))
|
||||
if self.parent: # Is ListView:
|
||||
instance_groups_queryset = self.parent.instance
|
||||
|
||||
instances = TaskManagerInstances(jobs_qs)
|
||||
instance_groups = TaskManagerInstanceGroups(instances_by_hostname=instances, instance_groups_queryset=instance_groups_queryset)
|
||||
tm_models = TaskManagerModels.init_with_consumed_capacity(
|
||||
instance_fields=['uuid', 'version', 'capacity', 'cpu', 'memory', 'managed_by_policy', 'enabled'],
|
||||
instance_groups_queryset=instance_groups_queryset,
|
||||
)
|
||||
|
||||
self.context['task_manager_igs'] = instance_groups
|
||||
self.context['task_manager_igs'] = tm_models.instance_groups
|
||||
return self.context['task_manager_igs']
|
||||
|
||||
def get_consumed_capacity(self, obj):
|
||||
|
||||
@ -16,7 +16,7 @@ from awx.conf.license import get_license
|
||||
from awx.main.utils import get_awx_version, camelcase_to_underscore, datetime_hook
|
||||
from awx.main import models
|
||||
from awx.main.analytics import register
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstances
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerModels
|
||||
|
||||
"""
|
||||
This module is used to define metrics collected by awx.main.analytics.gather()
|
||||
@ -237,11 +237,10 @@ def projects_by_scm_type(since, **kwargs):
|
||||
def instance_info(since, include_hostnames=False, **kwargs):
|
||||
info = {}
|
||||
# Use same method that the TaskManager does to compute consumed capacity without querying all running jobs for each Instance
|
||||
active_tasks = models.UnifiedJob.objects.filter(status__in=['running', 'waiting']).only('task_impact', 'controller_node', 'execution_node')
|
||||
tm_instances = TaskManagerInstances(
|
||||
active_tasks, instance_fields=['uuid', 'version', 'capacity', 'cpu', 'memory', 'managed_by_policy', 'enabled', 'node_type']
|
||||
)
|
||||
for tm_instance in tm_instances.instances_by_hostname.values():
|
||||
tm_models = TaskManagerModels.init_with_consumed_capacity(
|
||||
instance_fields=['uuid', 'version', 'capacity', 'cpu', 'memory', 'managed_by_policy', 'enabled']
|
||||
)
|
||||
for tm_instance in tm_models.instances.instances_by_hostname.values():
|
||||
instance = tm_instance.obj
|
||||
instance_info = {
|
||||
'uuid': instance.uuid,
|
||||
|
||||
23
awx/main/migrations/0173_instancegroup_max_limits.py
Normal file
23
awx/main/migrations/0173_instancegroup_max_limits.py
Normal file
@ -0,0 +1,23 @@
|
||||
# Generated by Django 3.2.13 on 2022-10-24 18:22
|
||||
|
||||
from django.db import migrations, models
|
||||
|
||||
|
||||
class Migration(migrations.Migration):
|
||||
|
||||
dependencies = [
|
||||
('main', '0172_prevent_instance_fallback'),
|
||||
]
|
||||
|
||||
operations = [
|
||||
migrations.AddField(
|
||||
model_name='instancegroup',
|
||||
name='max_concurrent_jobs',
|
||||
field=models.IntegerField(default=0, help_text='Maximum number of concurrent jobs to run on this group. Zero means no limit.'),
|
||||
),
|
||||
migrations.AddField(
|
||||
model_name='instancegroup',
|
||||
name='max_forks',
|
||||
field=models.IntegerField(default=0, help_text='Max forks to execute on this group. Zero means no limit.'),
|
||||
),
|
||||
]
|
||||
@ -379,6 +379,8 @@ class InstanceGroup(HasPolicyEditsMixin, BaseModel, RelatedJobsMixin):
|
||||
default='',
|
||||
)
|
||||
)
|
||||
max_concurrent_jobs = models.IntegerField(default=0, help_text=_("Maximum number of concurrent jobs to run on this group. Zero means no limit."))
|
||||
max_forks = models.IntegerField(default=0, help_text=_("Max forks to execute on this group. Zero means no limit."))
|
||||
policy_instance_percentage = models.IntegerField(default=0, help_text=_("Percentage of Instances to automatically assign to this group"))
|
||||
policy_instance_minimum = models.IntegerField(default=0, help_text=_("Static minimum number of Instances to automatically assign to this group"))
|
||||
policy_instance_list = JSONBlob(
|
||||
|
||||
@ -43,8 +43,7 @@ from awx.main.utils.common import task_manager_bulk_reschedule, is_testing
|
||||
from awx.main.signals import disable_activity_stream
|
||||
from awx.main.constants import ACTIVE_STATES
|
||||
from awx.main.scheduler.dependency_graph import DependencyGraph
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstances
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstanceGroups
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerModels
|
||||
import awx.main.analytics.subsystem_metrics as s_metrics
|
||||
from awx.main.utils import decrypt_field
|
||||
|
||||
@ -71,7 +70,12 @@ class TaskBase:
|
||||
# is called later.
|
||||
self.subsystem_metrics = s_metrics.Metrics(auto_pipe_execute=False)
|
||||
self.start_time = time.time()
|
||||
|
||||
# We want to avoid calling settings in loops, so cache these settings at init time
|
||||
self.start_task_limit = settings.START_TASK_LIMIT
|
||||
self.task_manager_timeout = settings.TASK_MANAGER_TIMEOUT
|
||||
self.control_task_impact = settings.AWX_CONTROL_NODE_TASK_IMPACT
|
||||
|
||||
for m in self.subsystem_metrics.METRICS:
|
||||
if m.startswith(self.prefix):
|
||||
self.subsystem_metrics.set(m, 0)
|
||||
@ -79,7 +83,7 @@ class TaskBase:
|
||||
def timed_out(self):
|
||||
"""Return True/False if we have met or exceeded the timeout for the task manager."""
|
||||
elapsed = time.time() - self.start_time
|
||||
if elapsed >= settings.TASK_MANAGER_TIMEOUT:
|
||||
if elapsed >= self.task_manager_timeout:
|
||||
logger.warning(f"{self.prefix} manager has run for {elapsed} which is greater than TASK_MANAGER_TIMEOUT of {settings.TASK_MANAGER_TIMEOUT}.")
|
||||
return True
|
||||
return False
|
||||
@ -471,9 +475,8 @@ class TaskManager(TaskBase):
|
||||
Init AFTER we know this instance of the task manager will run because the lock is acquired.
|
||||
"""
|
||||
self.dependency_graph = DependencyGraph()
|
||||
self.instances = TaskManagerInstances(self.all_tasks)
|
||||
self.instance_groups = TaskManagerInstanceGroups(instances_by_hostname=self.instances)
|
||||
self.controlplane_ig = self.instance_groups.controlplane_ig
|
||||
self.tm_models = TaskManagerModels()
|
||||
self.controlplane_ig = self.tm_models.instance_groups.controlplane_ig
|
||||
|
||||
def job_blocked_by(self, task):
|
||||
# TODO: I'm not happy with this, I think blocking behavior should be decided outside of the dependency graph
|
||||
@ -505,7 +508,15 @@ class TaskManager(TaskBase):
|
||||
|
||||
@timeit
|
||||
def start_task(self, task, instance_group, dependent_tasks=None, instance=None):
|
||||
# Just like for process_running_tasks, add the job to the dependency graph and
|
||||
# ask the TaskManagerInstanceGroups object to update consumed capacity on all
|
||||
# implicated instances and container groups.
|
||||
self.dependency_graph.add_job(task)
|
||||
if instance_group is not None:
|
||||
task.instance_group = instance_group
|
||||
# We need the instance group assigned to correctly account for container group max_concurrent_jobs and max_forks
|
||||
self.tm_models.consume_capacity(task)
|
||||
|
||||
self.subsystem_metrics.inc(f"{self.prefix}_tasks_started", 1)
|
||||
self.start_task_limit -= 1
|
||||
if self.start_task_limit == 0:
|
||||
@ -513,12 +524,6 @@ class TaskManager(TaskBase):
|
||||
ScheduleTaskManager().schedule()
|
||||
from awx.main.tasks.system import handle_work_error, handle_work_success
|
||||
|
||||
# update capacity for control node and execution node
|
||||
if task.controller_node:
|
||||
self.instances[task.controller_node].consume_capacity(settings.AWX_CONTROL_NODE_TASK_IMPACT)
|
||||
if task.execution_node:
|
||||
self.instances[task.execution_node].consume_capacity(task.task_impact)
|
||||
|
||||
dependent_tasks = dependent_tasks or []
|
||||
|
||||
task_actual = {
|
||||
@ -546,7 +551,6 @@ class TaskManager(TaskBase):
|
||||
ScheduleWorkflowManager().schedule()
|
||||
# at this point we already have control/execution nodes selected for the following cases
|
||||
else:
|
||||
task.instance_group = instance_group
|
||||
execution_node_msg = f' and execution node {task.execution_node}' if task.execution_node else ''
|
||||
logger.debug(
|
||||
f'Submitting job {task.log_format} controlled by {task.controller_node} to instance group {instance_group.name}{execution_node_msg}.'
|
||||
@ -580,6 +584,7 @@ class TaskManager(TaskBase):
|
||||
if type(task) is WorkflowJob:
|
||||
ScheduleWorkflowManager().schedule()
|
||||
self.dependency_graph.add_job(task)
|
||||
self.tm_models.consume_capacity(task)
|
||||
|
||||
@timeit
|
||||
def process_pending_tasks(self, pending_tasks):
|
||||
@ -611,11 +616,11 @@ class TaskManager(TaskBase):
|
||||
|
||||
# Determine if there is control capacity for the task
|
||||
if task.capacity_type == 'control':
|
||||
control_impact = task.task_impact + settings.AWX_CONTROL_NODE_TASK_IMPACT
|
||||
control_impact = task.task_impact + self.control_task_impact
|
||||
else:
|
||||
control_impact = settings.AWX_CONTROL_NODE_TASK_IMPACT
|
||||
control_instance = self.instance_groups.fit_task_to_most_remaining_capacity_instance(
|
||||
task, instance_group_name=settings.DEFAULT_CONTROL_PLANE_QUEUE_NAME, impact=control_impact, capacity_type='control'
|
||||
control_impact = self.control_task_impact
|
||||
control_instance = self.tm_models.instance_groups.fit_task_to_most_remaining_capacity_instance(
|
||||
task, instance_group_name=self.controlplane_ig.name, impact=control_impact, capacity_type='control'
|
||||
)
|
||||
if not control_instance:
|
||||
self.task_needs_capacity(task, tasks_to_update_job_explanation)
|
||||
@ -626,15 +631,19 @@ class TaskManager(TaskBase):
|
||||
|
||||
# All task.capacity_type == 'control' jobs should run on control plane, no need to loop over instance groups
|
||||
if task.capacity_type == 'control':
|
||||
if not self.tm_models.instance_groups[self.controlplane_ig.name].has_remaining_capacity(control_impact=True):
|
||||
continue
|
||||
task.execution_node = control_instance.hostname
|
||||
execution_instance = self.instances[control_instance.hostname].obj
|
||||
execution_instance = self.tm_models.instances[control_instance.hostname].obj
|
||||
task.log_lifecycle("controller_node_chosen")
|
||||
task.log_lifecycle("execution_node_chosen")
|
||||
self.start_task(task, self.controlplane_ig, task.get_jobs_fail_chain(), execution_instance)
|
||||
found_acceptable_queue = True
|
||||
continue
|
||||
|
||||
for instance_group in self.instance_groups.get_instance_groups_from_task_cache(task):
|
||||
for instance_group in self.tm_models.instance_groups.get_instance_groups_from_task_cache(task):
|
||||
if not self.tm_models.instance_groups[instance_group.name].has_remaining_capacity(task):
|
||||
continue
|
||||
if instance_group.is_container_group:
|
||||
self.start_task(task, instance_group, task.get_jobs_fail_chain(), None)
|
||||
found_acceptable_queue = True
|
||||
@ -642,9 +651,9 @@ class TaskManager(TaskBase):
|
||||
|
||||
# at this point we know the instance group is NOT a container group
|
||||
# because if it was, it would have started the task and broke out of the loop.
|
||||
execution_instance = self.instance_groups.fit_task_to_most_remaining_capacity_instance(
|
||||
execution_instance = self.tm_models.instance_groups.fit_task_to_most_remaining_capacity_instance(
|
||||
task, instance_group_name=instance_group.name, add_hybrid_control_cost=True
|
||||
) or self.instance_groups.find_largest_idle_instance(instance_group_name=instance_group.name, capacity_type=task.capacity_type)
|
||||
) or self.tm_models.instance_groups.find_largest_idle_instance(instance_group_name=instance_group.name, capacity_type=task.capacity_type)
|
||||
|
||||
if execution_instance:
|
||||
task.execution_node = execution_instance.hostname
|
||||
@ -660,7 +669,7 @@ class TaskManager(TaskBase):
|
||||
task.log_format, instance_group.name, execution_instance.hostname, execution_instance.remaining_capacity
|
||||
)
|
||||
)
|
||||
execution_instance = self.instances[execution_instance.hostname].obj
|
||||
execution_instance = self.tm_models.instances[execution_instance.hostname].obj
|
||||
self.start_task(task, instance_group, task.get_jobs_fail_chain(), execution_instance)
|
||||
found_acceptable_queue = True
|
||||
break
|
||||
|
||||
@ -15,15 +15,18 @@ logger = logging.getLogger('awx.main.scheduler')
|
||||
class TaskManagerInstance:
|
||||
"""A class representing minimal data the task manager needs to represent an Instance."""
|
||||
|
||||
def __init__(self, obj):
|
||||
def __init__(self, obj, **kwargs):
|
||||
self.obj = obj
|
||||
self.node_type = obj.node_type
|
||||
self.consumed_capacity = 0
|
||||
self.capacity = obj.capacity
|
||||
self.hostname = obj.hostname
|
||||
self.jobs_running = 0
|
||||
|
||||
def consume_capacity(self, impact):
|
||||
def consume_capacity(self, impact, job_impact=False):
|
||||
self.consumed_capacity += impact
|
||||
if job_impact:
|
||||
self.jobs_running += 1
|
||||
|
||||
@property
|
||||
def remaining_capacity(self):
|
||||
@ -33,9 +36,82 @@ class TaskManagerInstance:
|
||||
return remaining
|
||||
|
||||
|
||||
class TaskManagerInstanceGroup:
|
||||
"""A class representing minimal data the task manager needs to represent an InstanceGroup."""
|
||||
|
||||
def __init__(self, obj, task_manager_instances=None, **kwargs):
|
||||
self.name = obj.name
|
||||
self.is_container_group = obj.is_container_group
|
||||
self.container_group_jobs = 0
|
||||
self.container_group_consumed_forks = 0
|
||||
_instances = obj.instances.all()
|
||||
# We want the list of TaskManagerInstance objects because these are shared across the TaskManagerInstanceGroup objects.
|
||||
# This way when we consume capacity on an instance that is in multiple groups, we tabulate across all the groups correctly.
|
||||
self.instances = [task_manager_instances[instance.hostname] for instance in _instances if instance.hostname in task_manager_instances]
|
||||
self.instance_hostnames = tuple([instance.hostname for instance in _instances if instance.hostname in task_manager_instances])
|
||||
self.max_concurrent_jobs = obj.max_concurrent_jobs
|
||||
self.max_forks = obj.max_forks
|
||||
self.control_task_impact = kwargs.get('control_task_impact', settings.AWX_CONTROL_NODE_TASK_IMPACT)
|
||||
|
||||
def consume_capacity(self, task):
|
||||
"""We only consume capacity on an instance group level if it is a container group. Otherwise we consume capacity on an instance level."""
|
||||
if self.is_container_group:
|
||||
self.container_group_jobs += 1
|
||||
self.container_group_consumed_forks += task.task_impact
|
||||
else:
|
||||
raise RuntimeError("We only track capacity for container groups at the instance group level. Otherwise, consume capacity on instances.")
|
||||
|
||||
def get_remaining_instance_capacity(self):
|
||||
return sum(inst.remaining_capacity for inst in self.instances)
|
||||
|
||||
def get_consumed_instance_capacity(self):
|
||||
return sum(inst.consumed_capacity for inst in self.instances)
|
||||
|
||||
def get_instance_jobs_running(self):
|
||||
return sum(inst.jobs_running for inst in self.instances)
|
||||
|
||||
def has_remaining_capacity(self, task=None, control_impact=False):
|
||||
"""Pass either a task or control_impact=True to determine if the IG has capacity to run the control task or job task."""
|
||||
task_impact = self.control_task_impact if control_impact else task.task_impact
|
||||
job_impact = 0 if control_impact else 1
|
||||
|
||||
# We only want to loop over instances if self.max_concurrent_jobs is set
|
||||
if self.max_concurrent_jobs == 0:
|
||||
# Override the calculated remaining capacity, because when max_concurrent_jobs == 0 we don't enforce any max
|
||||
remaining_jobs = 0
|
||||
else:
|
||||
instance_jobs_running = self.get_instance_jobs_running()
|
||||
remaining_jobs = self.max_concurrent_jobs - instance_jobs_running - self.container_group_jobs - job_impact
|
||||
|
||||
# We only want to loop over instances if self.max_forks is set
|
||||
if self.max_forks == 0:
|
||||
# Override the calculated remaining capacity, because when max_forks == 0 we don't enforce any max
|
||||
remaining_forks = 0
|
||||
else:
|
||||
instance_consumed_forks = self.get_consumed_instance_capacity()
|
||||
remaining_forks = self.max_forks - instance_consumed_forks - self.container_group_consumed_forks - task_impact
|
||||
|
||||
if remaining_jobs < 0 or remaining_forks < 0:
|
||||
# A value less than zero means the task will not fit on the group
|
||||
task_string = f"task {task.log_format}" if task else "control task"
|
||||
if remaining_jobs < 0:
|
||||
logger.debug(f"{task_string} cannot fit on instance group {self.name} with {remaining_jobs} remaining jobs")
|
||||
if remaining_forks < 0:
|
||||
impact_string = f"with impact {task_impact}"
|
||||
logger.debug(f"{task_string} {impact_string} cannot fit on instance group {self.name} with {remaining_forks} remaining forks")
|
||||
return False
|
||||
|
||||
# Returning true means there is enough remaining capacity on the group to run the task (or no instance group level limits are being set)
|
||||
return True
|
||||
|
||||
|
||||
class TaskManagerInstances:
|
||||
def __init__(self, active_tasks, instances=None, instance_fields=('node_type', 'capacity', 'hostname', 'enabled')):
|
||||
def __init__(self, instances=None, instance_fields=('node_type', 'capacity', 'hostname', 'enabled'), **kwargs):
|
||||
self.instances_by_hostname = dict()
|
||||
self.instance_groups_container_group_jobs = dict()
|
||||
self.instance_groups_container_group_consumed_forks = dict()
|
||||
self.control_task_impact = kwargs.get('control_task_impact', settings.AWX_CONTROL_NODE_TASK_IMPACT)
|
||||
|
||||
if instances is None:
|
||||
instances = (
|
||||
Instance.objects.filter(hostname__isnull=False, node_state=Instance.States.READY, enabled=True)
|
||||
@ -43,18 +119,15 @@ class TaskManagerInstances:
|
||||
.only('node_type', 'node_state', 'capacity', 'hostname', 'enabled')
|
||||
)
|
||||
for instance in instances:
|
||||
self.instances_by_hostname[instance.hostname] = TaskManagerInstance(instance)
|
||||
self.instances_by_hostname[instance.hostname] = TaskManagerInstance(instance, **kwargs)
|
||||
|
||||
# initialize remaining capacity based on currently waiting and running tasks
|
||||
for task in active_tasks:
|
||||
if task.status not in ['waiting', 'running']:
|
||||
continue
|
||||
control_instance = self.instances_by_hostname.get(task.controller_node, '')
|
||||
execution_instance = self.instances_by_hostname.get(task.execution_node, '')
|
||||
if execution_instance and execution_instance.node_type in ('hybrid', 'execution'):
|
||||
self.instances_by_hostname[task.execution_node].consume_capacity(task.task_impact)
|
||||
if control_instance and control_instance.node_type in ('hybrid', 'control'):
|
||||
self.instances_by_hostname[task.controller_node].consume_capacity(settings.AWX_CONTROL_NODE_TASK_IMPACT)
|
||||
def consume_capacity(self, task):
|
||||
control_instance = self.instances_by_hostname.get(task.controller_node, '')
|
||||
execution_instance = self.instances_by_hostname.get(task.execution_node, '')
|
||||
if execution_instance and execution_instance.node_type in ('hybrid', 'execution'):
|
||||
self.instances_by_hostname[task.execution_node].consume_capacity(task.task_impact, job_impact=True)
|
||||
if control_instance and control_instance.node_type in ('hybrid', 'control'):
|
||||
self.instances_by_hostname[task.controller_node].consume_capacity(self.control_task_impact)
|
||||
|
||||
def __getitem__(self, hostname):
|
||||
return self.instances_by_hostname.get(hostname)
|
||||
@ -64,42 +137,48 @@ class TaskManagerInstances:
|
||||
|
||||
|
||||
class TaskManagerInstanceGroups:
|
||||
"""A class representing minimal data the task manager needs to represent an InstanceGroup."""
|
||||
"""A class representing minimal data the task manager needs to represent all the InstanceGroups."""
|
||||
|
||||
def __init__(self, instances_by_hostname=None, instance_groups=None, instance_groups_queryset=None):
|
||||
def __init__(self, task_manager_instances=None, instance_groups=None, instance_groups_queryset=None, **kwargs):
|
||||
self.instance_groups = dict()
|
||||
self.task_manager_instances = task_manager_instances if task_manager_instances is not None else TaskManagerInstances()
|
||||
self.controlplane_ig = None
|
||||
self.pk_ig_map = dict()
|
||||
self.control_task_impact = kwargs.get('control_task_impact', settings.AWX_CONTROL_NODE_TASK_IMPACT)
|
||||
self.controlplane_ig_name = kwargs.get('controlplane_ig_name', settings.DEFAULT_CONTROL_PLANE_QUEUE_NAME)
|
||||
|
||||
if instance_groups is not None: # for testing
|
||||
self.instance_groups = instance_groups
|
||||
self.instance_groups = {ig.name: TaskManagerInstanceGroup(ig, self.task_manager_instances, **kwargs) for ig in instance_groups}
|
||||
self.pk_ig_map = {ig.pk: ig for ig in instance_groups}
|
||||
else:
|
||||
if instance_groups_queryset is None:
|
||||
instance_groups_queryset = InstanceGroup.objects.prefetch_related('instances').only('name', 'instances')
|
||||
for instance_group in instance_groups_queryset:
|
||||
if instance_group.name == settings.DEFAULT_CONTROL_PLANE_QUEUE_NAME:
|
||||
self.controlplane_ig = instance_group
|
||||
self.instance_groups[instance_group.name] = dict(
|
||||
instances=[
|
||||
instances_by_hostname[instance.hostname] for instance in instance_group.instances.all() if instance.hostname in instances_by_hostname
|
||||
],
|
||||
instance_groups_queryset = InstanceGroup.objects.prefetch_related('instances').only(
|
||||
'name', 'instances', 'max_concurrent_jobs', 'max_forks', 'is_container_group'
|
||||
)
|
||||
for instance_group in instance_groups_queryset:
|
||||
if instance_group.name == self.controlplane_ig_name:
|
||||
self.controlplane_ig = instance_group
|
||||
self.instance_groups[instance_group.name] = TaskManagerInstanceGroup(instance_group, self.task_manager_instances, **kwargs)
|
||||
self.pk_ig_map[instance_group.pk] = instance_group
|
||||
|
||||
def __getitem__(self, ig_name):
|
||||
return self.instance_groups.get(ig_name)
|
||||
|
||||
def __contains__(self, ig_name):
|
||||
return ig_name in self.instance_groups
|
||||
|
||||
def get_remaining_capacity(self, group_name):
|
||||
instances = self.instance_groups[group_name]['instances']
|
||||
return sum(inst.remaining_capacity for inst in instances)
|
||||
return self.instance_groups[group_name].get_remaining_instance_capacity()
|
||||
|
||||
def get_consumed_capacity(self, group_name):
|
||||
instances = self.instance_groups[group_name]['instances']
|
||||
return sum(inst.consumed_capacity for inst in instances)
|
||||
return self.instance_groups[group_name].get_consumed_instance_capacity()
|
||||
|
||||
def fit_task_to_most_remaining_capacity_instance(self, task, instance_group_name, impact=None, capacity_type=None, add_hybrid_control_cost=False):
|
||||
impact = impact if impact else task.task_impact
|
||||
capacity_type = capacity_type if capacity_type else task.capacity_type
|
||||
instance_most_capacity = None
|
||||
most_remaining_capacity = -1
|
||||
instances = self.instance_groups[instance_group_name]['instances']
|
||||
instances = self.instance_groups[instance_group_name].instances
|
||||
|
||||
for i in instances:
|
||||
if i.node_type not in (capacity_type, 'hybrid'):
|
||||
@ -107,7 +186,7 @@ class TaskManagerInstanceGroups:
|
||||
would_be_remaining = i.remaining_capacity - impact
|
||||
# hybrid nodes _always_ control their own tasks
|
||||
if add_hybrid_control_cost and i.node_type == 'hybrid':
|
||||
would_be_remaining -= settings.AWX_CONTROL_NODE_TASK_IMPACT
|
||||
would_be_remaining -= self.control_task_impact
|
||||
if would_be_remaining >= 0 and (instance_most_capacity is None or would_be_remaining > most_remaining_capacity):
|
||||
instance_most_capacity = i
|
||||
most_remaining_capacity = would_be_remaining
|
||||
@ -115,10 +194,13 @@ class TaskManagerInstanceGroups:
|
||||
|
||||
def find_largest_idle_instance(self, instance_group_name, capacity_type='execution'):
|
||||
largest_instance = None
|
||||
instances = self.instance_groups[instance_group_name]['instances']
|
||||
instances = self.instance_groups[instance_group_name].instances
|
||||
for i in instances:
|
||||
if i.node_type not in (capacity_type, 'hybrid'):
|
||||
continue
|
||||
if i.capacity <= 0:
|
||||
# We don't want to select an idle instance with 0 capacity
|
||||
continue
|
||||
if (hasattr(i, 'jobs_running') and i.jobs_running == 0) or i.remaining_capacity == i.capacity:
|
||||
if largest_instance is None:
|
||||
largest_instance = i
|
||||
@ -139,3 +221,41 @@ class TaskManagerInstanceGroups:
|
||||
logger.warn(f"No instance groups in cache exist, defaulting to global instance groups for task {task}")
|
||||
return task.global_instance_groups
|
||||
return igs
|
||||
|
||||
|
||||
class TaskManagerModels:
|
||||
def __init__(self, **kwargs):
|
||||
# We want to avoid calls to settings over and over in loops, so cache this information here
|
||||
kwargs['control_task_impact'] = kwargs.get('control_task_impact', settings.AWX_CONTROL_NODE_TASK_IMPACT)
|
||||
kwargs['controlplane_ig_name'] = kwargs.get('controlplane_ig_name', settings.DEFAULT_CONTROL_PLANE_QUEUE_NAME)
|
||||
self.instances = TaskManagerInstances(**kwargs)
|
||||
self.instance_groups = TaskManagerInstanceGroups(task_manager_instances=self.instances, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def init_with_consumed_capacity(cls, **kwargs):
|
||||
tmm = cls(**kwargs)
|
||||
tasks = kwargs.get('tasks', None)
|
||||
|
||||
if tasks is None:
|
||||
# No tasks were provided, so we will fetch them from the database
|
||||
task_status_filter_list = kwargs.get('task_status_filter_list', ['running', 'waiting'])
|
||||
task_fields = kwargs.get('task_fields', ('task_impact', 'controller_node', 'execution_node', 'instance_group'))
|
||||
from awx.main.models import UnifiedJob
|
||||
|
||||
tasks = UnifiedJob.objects.filter(status__in=task_status_filter_list).only(*task_fields)
|
||||
|
||||
for task in tasks:
|
||||
tmm.consume_capacity(task)
|
||||
|
||||
return tmm
|
||||
|
||||
def consume_capacity(self, task):
|
||||
# Consume capacity on instances, which bubbles up to instance groups they are a member of
|
||||
self.instances.consume_capacity(task)
|
||||
|
||||
# For container group jobs, additionally we must account for capacity consumed since
|
||||
# The container groups have no instances to look at to track how many jobs/forks are consumed
|
||||
if task.instance_group_id:
|
||||
ig = self.instance_groups.pk_ig_map[task.instance_group_id]
|
||||
if ig.is_container_group:
|
||||
self.instance_groups[ig.name].consume_capacity(task)
|
||||
|
||||
@ -4,7 +4,7 @@ from awx.main.models import (
|
||||
Instance,
|
||||
InstanceGroup,
|
||||
)
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstanceGroups, TaskManagerInstances
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstanceGroups
|
||||
|
||||
|
||||
class TestInstanceGroupInstanceMapping(TransactionTestCase):
|
||||
@ -23,11 +23,10 @@ class TestInstanceGroupInstanceMapping(TransactionTestCase):
|
||||
def test_mapping(self):
|
||||
self.sample_cluster()
|
||||
with self.assertNumQueries(3):
|
||||
instances = TaskManagerInstances([]) # empty task list
|
||||
instance_groups = TaskManagerInstanceGroups(instances_by_hostname=instances)
|
||||
instance_groups = TaskManagerInstanceGroups()
|
||||
|
||||
ig_instance_map = instance_groups.instance_groups
|
||||
|
||||
assert set(i.hostname for i in ig_instance_map['ig_small']['instances']) == set(['i1'])
|
||||
assert set(i.hostname for i in ig_instance_map['ig_large']['instances']) == set(['i2', 'i3'])
|
||||
assert set(i.hostname for i in ig_instance_map['default']['instances']) == set(['i2'])
|
||||
assert set(i.hostname for i in ig_instance_map['ig_small'].instances) == set(['i1'])
|
||||
assert set(i.hostname for i in ig_instance_map['ig_large'].instances) == set(['i2', 'i3'])
|
||||
assert set(i.hostname for i in ig_instance_map['default'].instances) == set(['i2'])
|
||||
|
||||
@ -10,6 +10,10 @@ from awx.main.utils import (
|
||||
create_temporary_fifo,
|
||||
)
|
||||
|
||||
from awx.main.scheduler import TaskManager
|
||||
|
||||
from . import create_job
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def containerized_job(default_instance_group, kube_credential, job_template_factory):
|
||||
@ -34,6 +38,50 @@ def test_containerized_job(containerized_job):
|
||||
assert containerized_job.instance_group.credential.kubernetes
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_max_concurrent_jobs_blocks_start_of_new_jobs(controlplane_instance_group, containerized_job, mocker):
|
||||
"""Construct a scenario where only 1 job will fit within the max_concurrent_jobs of the container group.
|
||||
|
||||
Since max_concurrent_jobs is set to 1, even though 2 jobs are in pending
|
||||
and would be launched into the container group, only one will be started.
|
||||
"""
|
||||
containerized_job.unified_job_template.allow_simultaneous = True
|
||||
containerized_job.unified_job_template.save()
|
||||
default_instance_group = containerized_job.instance_group
|
||||
default_instance_group.max_concurrent_jobs = 1
|
||||
default_instance_group.save()
|
||||
task_impact = 1
|
||||
# Create a second job that should not be scheduled at first, blocked by the other
|
||||
create_job(containerized_job.unified_job_template)
|
||||
tm = TaskManager()
|
||||
with mock.patch('awx.main.models.Job.task_impact', new_callable=mock.PropertyMock) as mock_task_impact:
|
||||
mock_task_impact.return_value = task_impact
|
||||
with mock.patch.object(TaskManager, "start_task", wraps=tm.start_task) as mock_job:
|
||||
tm.schedule()
|
||||
mock_job.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_max_forks_blocks_start_of_new_jobs(controlplane_instance_group, containerized_job, mocker):
|
||||
"""Construct a scenario where only 1 job will fit within the max_forks of the container group.
|
||||
|
||||
In this case, we set the container_group max_forks to 10, and make the task_impact of a job 6.
|
||||
Therefore, only 1 job will fit within the max of 10.
|
||||
"""
|
||||
containerized_job.unified_job_template.allow_simultaneous = True
|
||||
containerized_job.unified_job_template.save()
|
||||
default_instance_group = containerized_job.instance_group
|
||||
default_instance_group.max_forks = 10
|
||||
# Create a second job that should not be scheduled
|
||||
create_job(containerized_job.unified_job_template)
|
||||
tm = TaskManager()
|
||||
with mock.patch('awx.main.models.Job.task_impact', new_callable=mock.PropertyMock) as mock_task_impact:
|
||||
mock_task_impact.return_value = 6
|
||||
with mock.patch("awx.main.scheduler.TaskManager.start_task"):
|
||||
tm.schedule()
|
||||
tm.start_task.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_kubectl_ssl_verification(containerized_job, default_job_execution_environment):
|
||||
containerized_job.execution_environment = default_job_execution_environment
|
||||
|
||||
@ -248,6 +248,76 @@ def test_multi_jt_capacity_blocking(hybrid_instance, job_template_factory, mocke
|
||||
mock_job.assert_called_once_with(j2, controlplane_instance_group, [], instance)
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_max_concurrent_jobs_ig_capacity_blocking(hybrid_instance, job_template_factory, mocker):
|
||||
"""When max_concurrent_jobs of an instance group is more restrictive than capacity of instances, enforce max_concurrent_jobs."""
|
||||
instance = hybrid_instance
|
||||
controlplane_instance_group = instance.rampart_groups.first()
|
||||
# We will expect only 1 job to be started
|
||||
controlplane_instance_group.max_concurrent_jobs = 1
|
||||
controlplane_instance_group.save()
|
||||
num_jobs = 3
|
||||
jobs = []
|
||||
for i in range(num_jobs):
|
||||
jobs.append(
|
||||
create_job(job_template_factory(f'jt{i}', organization=f'org{i}', project=f'proj{i}', inventory=f'inv{i}', credential=f'cred{i}').job_template)
|
||||
)
|
||||
tm = TaskManager()
|
||||
task_impact = 1
|
||||
|
||||
# Sanity check that multiple jobs would run if not for the max_concurrent_jobs setting.
|
||||
assert task_impact * num_jobs < controlplane_instance_group.capacity
|
||||
tm = TaskManager()
|
||||
with mock.patch('awx.main.models.Job.task_impact', new_callable=mock.PropertyMock) as mock_task_impact:
|
||||
mock_task_impact.return_value = task_impact
|
||||
with mock.patch.object(TaskManager, "start_task", wraps=tm.start_task) as mock_job:
|
||||
tm.schedule()
|
||||
mock_job.assert_called_once()
|
||||
jobs[0].status = 'running'
|
||||
jobs[0].controller_node = instance.hostname
|
||||
jobs[0].execution_node = instance.hostname
|
||||
jobs[0].instance_group = controlplane_instance_group
|
||||
jobs[0].save()
|
||||
|
||||
# while that job is running, we should not start another job
|
||||
with mock.patch('awx.main.models.Job.task_impact', new_callable=mock.PropertyMock) as mock_task_impact:
|
||||
mock_task_impact.return_value = task_impact
|
||||
with mock.patch.object(TaskManager, "start_task", wraps=tm.start_task) as mock_job:
|
||||
tm.schedule()
|
||||
mock_job.assert_not_called()
|
||||
# now job is done, we should start one of the two other jobs
|
||||
jobs[0].status = 'successful'
|
||||
jobs[0].save()
|
||||
with mock.patch('awx.main.models.Job.task_impact', new_callable=mock.PropertyMock) as mock_task_impact:
|
||||
mock_task_impact.return_value = task_impact
|
||||
with mock.patch.object(TaskManager, "start_task", wraps=tm.start_task) as mock_job:
|
||||
tm.schedule()
|
||||
mock_job.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_max_forks_ig_capacity_blocking(hybrid_instance, job_template_factory, mocker):
|
||||
"""When max_forks of an instance group is less than the capacity of instances, enforce max_forks."""
|
||||
instance = hybrid_instance
|
||||
controlplane_instance_group = instance.rampart_groups.first()
|
||||
controlplane_instance_group.max_forks = 15
|
||||
controlplane_instance_group.save()
|
||||
task_impact = 10
|
||||
num_jobs = 2
|
||||
# Sanity check that 2 jobs would run if not for the max_forks setting.
|
||||
assert controlplane_instance_group.max_forks < controlplane_instance_group.capacity
|
||||
assert task_impact * num_jobs > controlplane_instance_group.max_forks
|
||||
assert task_impact * num_jobs < controlplane_instance_group.capacity
|
||||
for i in range(num_jobs):
|
||||
create_job(job_template_factory(f'jt{i}', organization=f'org{i}', project=f'proj{i}', inventory=f'inv{i}', credential=f'cred{i}').job_template)
|
||||
tm = TaskManager()
|
||||
with mock.patch('awx.main.models.Job.task_impact', new_callable=mock.PropertyMock) as mock_task_impact:
|
||||
mock_task_impact.return_value = task_impact
|
||||
with mock.patch.object(TaskManager, "start_task", wraps=tm.start_task) as mock_job:
|
||||
tm.schedule()
|
||||
mock_job.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.django_db
|
||||
def test_single_job_dependencies_project_launch(controlplane_instance_group, job_template_factory, mocker):
|
||||
objects = job_template_factory('jt', organization='org1', project='proj', inventory='inv', credential='cred')
|
||||
|
||||
@ -1,10 +1,7 @@
|
||||
import pytest
|
||||
from unittest import mock
|
||||
from unittest.mock import Mock
|
||||
from decimal import Decimal
|
||||
|
||||
from awx.main.models import InstanceGroup, Instance
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstanceGroups
|
||||
from awx.main.models import Instance
|
||||
|
||||
|
||||
@pytest.mark.parametrize('capacity_adjustment', [0.0, 0.25, 0.5, 0.75, 1, 1.5, 3])
|
||||
@ -17,83 +14,6 @@ def test_capacity_adjustment_no_save(capacity_adjustment):
|
||||
assert inst.capacity == (float(inst.capacity_adjustment) * abs(inst.mem_capacity - inst.cpu_capacity) + min(inst.mem_capacity, inst.cpu_capacity))
|
||||
|
||||
|
||||
def T(impact):
|
||||
j = mock.Mock(spec_set=['task_impact', 'capacity_type'])
|
||||
j.task_impact = impact
|
||||
j.capacity_type = 'execution'
|
||||
return j
|
||||
|
||||
|
||||
def Is(param):
|
||||
"""
|
||||
param:
|
||||
[remaining_capacity1, remaining_capacity2, remaining_capacity3, ...]
|
||||
[(jobs_running1, capacity1), (jobs_running2, capacity2), (jobs_running3, capacity3), ...]
|
||||
"""
|
||||
|
||||
instances = []
|
||||
if isinstance(param[0], tuple):
|
||||
for (jobs_running, capacity) in param:
|
||||
inst = Mock()
|
||||
inst.capacity = capacity
|
||||
inst.jobs_running = jobs_running
|
||||
inst.node_type = 'execution'
|
||||
instances.append(inst)
|
||||
else:
|
||||
for i in param:
|
||||
inst = Mock()
|
||||
inst.remaining_capacity = i
|
||||
inst.node_type = 'execution'
|
||||
instances.append(inst)
|
||||
return instances
|
||||
|
||||
|
||||
class TestInstanceGroup(object):
|
||||
@pytest.mark.parametrize(
|
||||
'task,instances,instance_fit_index,reason',
|
||||
[
|
||||
(T(100), Is([100]), 0, "Only one, pick it"),
|
||||
(T(100), Is([100, 100]), 0, "Two equally good fits, pick the first"),
|
||||
(T(100), Is([50, 100]), 1, "First instance not as good as second instance"),
|
||||
(T(100), Is([50, 0, 20, 100, 100, 100, 30, 20]), 3, "Pick Instance [3] as it is the first that the task fits in."),
|
||||
(T(100), Is([50, 0, 20, 99, 11, 1, 5, 99]), None, "The task don't a fit, you must a quit!"),
|
||||
],
|
||||
)
|
||||
def test_fit_task_to_most_remaining_capacity_instance(self, task, instances, instance_fit_index, reason):
|
||||
InstanceGroup(id=10)
|
||||
tm_igs = TaskManagerInstanceGroups(instance_groups={'controlplane': {'instances': instances}})
|
||||
|
||||
instance_picked = tm_igs.fit_task_to_most_remaining_capacity_instance(task, 'controlplane')
|
||||
|
||||
if instance_fit_index is None:
|
||||
assert instance_picked is None, reason
|
||||
else:
|
||||
assert instance_picked == instances[instance_fit_index], reason
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'instances,instance_fit_index,reason',
|
||||
[
|
||||
(Is([(0, 100)]), 0, "One idle instance, pick it"),
|
||||
(Is([(1, 100)]), None, "One un-idle instance, pick nothing"),
|
||||
(Is([(0, 100), (0, 200), (1, 500), (0, 700)]), 3, "Pick the largest idle instance"),
|
||||
(Is([(0, 100), (0, 200), (1, 10000), (0, 700), (0, 699)]), 3, "Pick the largest idle instance"),
|
||||
(Is([(0, 0)]), None, "One idle but down instance, don't pick it"),
|
||||
],
|
||||
)
|
||||
def test_find_largest_idle_instance(self, instances, instance_fit_index, reason):
|
||||
def filter_offline_instances(*args):
|
||||
return filter(lambda i: i.capacity > 0, instances)
|
||||
|
||||
InstanceGroup(id=10)
|
||||
instances_online_only = filter_offline_instances(instances)
|
||||
tm_igs = TaskManagerInstanceGroups(instance_groups={'controlplane': {'instances': instances_online_only}})
|
||||
|
||||
if instance_fit_index is None:
|
||||
assert tm_igs.find_largest_idle_instance('controlplane') is None, reason
|
||||
else:
|
||||
assert tm_igs.find_largest_idle_instance('controlplane') == instances[instance_fit_index], reason
|
||||
|
||||
|
||||
def test_cleanup_params_defaults():
|
||||
inst = Instance(hostname='foobar')
|
||||
assert inst.get_cleanup_task_kwargs(exclude_strings=['awx_423_']) == {'exclude_strings': ['awx_423_'], 'file_pattern': '/tmp/awx_*_*', 'grace_period': 60}
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
import pytest
|
||||
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerInstanceGroups, TaskManagerInstances
|
||||
from awx.main.scheduler.task_manager_models import TaskManagerModels
|
||||
|
||||
|
||||
class FakeMeta(object):
|
||||
@ -16,38 +16,64 @@ class FakeObject(object):
|
||||
|
||||
|
||||
class Job(FakeObject):
|
||||
task_impact = 43
|
||||
is_container_group_task = False
|
||||
controller_node = ''
|
||||
execution_node = ''
|
||||
def __init__(self, **kwargs):
|
||||
self.task_impact = kwargs.get('task_impact', 43)
|
||||
self.is_container_group_task = kwargs.get('is_container_group_task', False)
|
||||
self.controller_node = kwargs.get('controller_node', '')
|
||||
self.execution_node = kwargs.get('execution_node', '')
|
||||
self.instance_group = kwargs.get('instance_group', None)
|
||||
self.instance_group_id = self.instance_group.id if self.instance_group else None
|
||||
self.capacity_type = kwargs.get('capacity_type', 'execution')
|
||||
|
||||
def log_format(self):
|
||||
return 'job 382 (fake)'
|
||||
|
||||
|
||||
class Instances(FakeObject):
|
||||
def add(self, *args):
|
||||
for instance in args:
|
||||
self.obj.instance_list.append(instance)
|
||||
|
||||
def all(self):
|
||||
return self.obj.instance_list
|
||||
|
||||
|
||||
class InstanceGroup(FakeObject):
|
||||
def __init__(self, **kwargs):
|
||||
super(InstanceGroup, self).__init__(**kwargs)
|
||||
self.instance_list = []
|
||||
self.pk = self.id = kwargs.get('id', 1)
|
||||
|
||||
@property
|
||||
def instances(self):
|
||||
mgr = Instances(obj=self)
|
||||
return mgr
|
||||
|
||||
@property
|
||||
def is_container_group(self):
|
||||
return False
|
||||
|
||||
@property
|
||||
def max_concurrent_jobs(self):
|
||||
return 0
|
||||
|
||||
@property
|
||||
def max_forks(self):
|
||||
return 0
|
||||
|
||||
|
||||
class Instance(FakeObject):
|
||||
def __init__(self, **kwargs):
|
||||
self.node_type = kwargs.get('node_type', 'hybrid')
|
||||
self.capacity = kwargs.get('capacity', 0)
|
||||
self.hostname = kwargs.get('hostname', 'fakehostname')
|
||||
self.consumed_capacity = 0
|
||||
self.jobs_running = 0
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_cluster():
|
||||
def stand_up_cluster():
|
||||
class Instances(FakeObject):
|
||||
def add(self, *args):
|
||||
for instance in args:
|
||||
self.obj.instance_list.append(instance)
|
||||
|
||||
def all(self):
|
||||
return self.obj.instance_list
|
||||
|
||||
class InstanceGroup(FakeObject):
|
||||
def __init__(self, **kwargs):
|
||||
super(InstanceGroup, self).__init__(**kwargs)
|
||||
self.instance_list = []
|
||||
|
||||
@property
|
||||
def instances(self):
|
||||
mgr = Instances(obj=self)
|
||||
return mgr
|
||||
|
||||
class Instance(FakeObject):
|
||||
pass
|
||||
|
||||
ig_small = InstanceGroup(name='ig_small')
|
||||
ig_large = InstanceGroup(name='ig_large')
|
||||
@ -66,14 +92,12 @@ def sample_cluster():
|
||||
@pytest.fixture
|
||||
def create_ig_manager():
|
||||
def _rf(ig_list, tasks):
|
||||
instances = TaskManagerInstances(tasks, instances=set(inst for ig in ig_list for inst in ig.instance_list))
|
||||
|
||||
seed_igs = {}
|
||||
for ig in ig_list:
|
||||
seed_igs[ig.name] = {'instances': [instances[inst.hostname] for inst in ig.instance_list]}
|
||||
|
||||
instance_groups = TaskManagerInstanceGroups(instance_groups=seed_igs)
|
||||
return instance_groups
|
||||
tm_models = TaskManagerModels.init_with_consumed_capacity(
|
||||
tasks=tasks,
|
||||
instances=set(inst for ig in ig_list for inst in ig.instance_list),
|
||||
instance_groups=ig_list,
|
||||
)
|
||||
return tm_models.instance_groups
|
||||
|
||||
return _rf
|
||||
|
||||
@ -126,3 +150,75 @@ def test_RBAC_reduced_filter(sample_cluster, create_ig_manager):
|
||||
# Cross-links between groups not visible to current user,
|
||||
# so a naieve accounting of capacities is returned instead
|
||||
assert instance_groups_mgr.get_consumed_capacity('default') == 43
|
||||
|
||||
|
||||
def Is(param):
|
||||
"""
|
||||
param:
|
||||
[remaining_capacity1, remaining_capacity2, remaining_capacity3, ...]
|
||||
[(jobs_running1, capacity1), (jobs_running2, capacity2), (jobs_running3, capacity3), ...]
|
||||
"""
|
||||
|
||||
instances = []
|
||||
if isinstance(param[0], tuple):
|
||||
for index, (jobs_running, capacity) in enumerate(param):
|
||||
inst = Instance(capacity=capacity, node_type='execution', hostname=f'fakehost-{index}')
|
||||
inst.jobs_running = jobs_running
|
||||
instances.append(inst)
|
||||
else:
|
||||
for index, capacity in enumerate(param):
|
||||
inst = Instance(capacity=capacity, node_type='execution', hostname=f'fakehost-{index}')
|
||||
inst.node_type = 'execution'
|
||||
instances.append(inst)
|
||||
return instances
|
||||
|
||||
|
||||
class TestSelectBestInstanceForTask(object):
|
||||
@pytest.mark.parametrize(
|
||||
'task,instances,instance_fit_index,reason',
|
||||
[
|
||||
(Job(task_impact=100), Is([100]), 0, "Only one, pick it"),
|
||||
(Job(task_impact=100), Is([100, 100]), 0, "Two equally good fits, pick the first"),
|
||||
(Job(task_impact=100), Is([50, 100]), 1, "First instance not as good as second instance"),
|
||||
(Job(task_impact=100), Is([50, 0, 20, 100, 100, 100, 30, 20]), 3, "Pick Instance [3] as it is the first that the task fits in."),
|
||||
(Job(task_impact=100), Is([50, 0, 20, 99, 11, 1, 5, 99]), None, "The task don't a fit, you must a quit!"),
|
||||
],
|
||||
)
|
||||
def test_fit_task_to_most_remaining_capacity_instance(self, task, instances, instance_fit_index, reason):
|
||||
ig = InstanceGroup(id=10, name='controlplane')
|
||||
tasks = []
|
||||
for instance in instances:
|
||||
ig.instances.add(instance)
|
||||
for _ in range(instance.jobs_running):
|
||||
tasks.append(Job(execution_node=instance.hostname, controller_node=instance.hostname, instance_group=ig))
|
||||
tm_models = TaskManagerModels.init_with_consumed_capacity(tasks=tasks, instances=instances, instance_groups=[ig])
|
||||
instance_picked = tm_models.instance_groups.fit_task_to_most_remaining_capacity_instance(task, 'controlplane')
|
||||
|
||||
if instance_fit_index is None:
|
||||
assert instance_picked is None, reason
|
||||
else:
|
||||
assert instance_picked.hostname == instances[instance_fit_index].hostname, reason
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
'instances,instance_fit_index,reason',
|
||||
[
|
||||
(Is([(0, 100)]), 0, "One idle instance, pick it"),
|
||||
(Is([(1, 100)]), None, "One un-idle instance, pick nothing"),
|
||||
(Is([(0, 100), (0, 200), (1, 500), (0, 700)]), 3, "Pick the largest idle instance"),
|
||||
(Is([(0, 100), (0, 200), (1, 10000), (0, 700), (0, 699)]), 3, "Pick the largest idle instance"),
|
||||
(Is([(0, 0)]), None, "One idle but down instance, don't pick it"),
|
||||
],
|
||||
)
|
||||
def test_find_largest_idle_instance(self, instances, instance_fit_index, reason):
|
||||
ig = InstanceGroup(id=10, name='controlplane')
|
||||
tasks = []
|
||||
for instance in instances:
|
||||
ig.instances.add(instance)
|
||||
for _ in range(instance.jobs_running):
|
||||
tasks.append(Job(execution_node=instance.hostname, controller_node=instance.hostname, instance_group=ig))
|
||||
tm_models = TaskManagerModels.init_with_consumed_capacity(tasks=tasks, instances=instances, instance_groups=[ig])
|
||||
|
||||
if instance_fit_index is None:
|
||||
assert tm_models.instance_groups.find_largest_idle_instance('controlplane') is None, reason
|
||||
else:
|
||||
assert tm_models.instance_groups.find_largest_idle_instance('controlplane').hostname == instances[instance_fit_index].hostname, reason
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user