Merge branch 'feature-ha_task_manager' into devel

This commit is contained in:
Chris Meyers 2016-09-29 10:27:17 -04:00
commit dd3c3c9f29
14 changed files with 633 additions and 551 deletions

View File

@ -361,7 +361,6 @@ server_noattach:
tmux rename-window 'Tower'
tmux select-window -t tower:0
tmux split-window -v 'exec make celeryd'
tmux split-window -h 'exec make taskmanager'
tmux new-window 'exec make receiver'
tmux select-window -t tower:1
tmux rename-window 'Extra Services'
@ -401,7 +400,7 @@ celeryd:
@if [ "$(VENV_BASE)" ]; then \
. $(VENV_BASE)/tower/bin/activate; \
fi; \
$(PYTHON) manage.py celeryd -l DEBUG -B --autoscale=20,3 --schedule=$(CELERY_SCHEDULE_FILE) -Q projects,jobs,default
$(PYTHON) manage.py celeryd -l DEBUG -B --autoscale=20,3 --schedule=$(CELERY_SCHEDULE_FILE) -Q projects,jobs,default,scheduler
#$(PYTHON) manage.py celery multi show projects jobs default -l DEBUG -Q:projects projects -Q:jobs jobs -Q:default default -c:projects 1 -c:jobs 3 -c:default 3 -Ofair -B --schedule=$(CELERY_SCHEDULE_FILE)
# Run to start the zeromq callback receiver
@ -411,16 +410,6 @@ receiver:
fi; \
$(PYTHON) manage.py run_callback_receiver
taskmanager:
@if [ "$(VENV_BASE)" ]; then \
. $(VENV_BASE)/tower/bin/activate; \
fi; \
if [ "$(COMPOSE_HOST)" == "tower_1" ] || [ "$(COMPOSE_HOST)" == "tower" ]; then \
$(PYTHON) manage.py run_task_system; \
else \
while true; do sleep 2; done; \
fi
socketservice:
@if [ "$(VENV_BASE)" ]; then \
. $(VENV_BASE)/tower/bin/activate; \

View File

@ -1,7 +1,6 @@
runserver: make runserver
celeryd: make celeryd
taskmanager: make taskmanager
receiver: make receiver
socketservice: make socketservice
factcacher: make factcacher
flower: make flower
flower: make flower

View File

@ -2275,6 +2275,7 @@ class JobTemplateLaunch(RetrieveAPIView, GenericAPIView):
new_job = obj.create_unified_job(**kv)
result = new_job.signal_start(**kv)
if not result:
data = dict(passwords_needed_to_start=new_job.passwords_needed_to_start)
new_job.delete()

View File

@ -1,483 +0,0 @@
#Copyright (c) 2015 Ansible, Inc.
# All Rights Reserved
# Python
import os
import datetime
import logging
import signal
import time
# Django
from django.conf import settings
from django.core.management.base import NoArgsCommand
# AWX
from awx.main.models import * # noqa
from awx.main.queue import FifoQueue
from awx.main.tasks import handle_work_error, handle_work_success
from awx.main.utils import get_system_task_capacity
# Celery
from celery.task.control import inspect
logger = logging.getLogger('awx.main.commands.run_task_system')
queue = FifoQueue('tower_task_manager')
class SimpleDAG(object):
''' A simple implementation of a directed acyclic graph '''
def __init__(self):
self.nodes = []
self.edges = []
def __contains__(self, obj):
for node in self.nodes:
if node['node_object'] == obj:
return True
return False
def __len__(self):
return len(self.nodes)
def __iter__(self):
return self.nodes.__iter__()
def generate_graphviz_plot(self):
def short_string_obj(obj):
if type(obj) == Job:
type_str = "Job"
if type(obj) == AdHocCommand:
type_str = "AdHocCommand"
elif type(obj) == InventoryUpdate:
type_str = "Inventory"
elif type(obj) == ProjectUpdate:
type_str = "Project"
elif type(obj) == WorkflowJob:
type_str = "Workflow"
else:
type_str = "Unknown"
type_str += "%s" % str(obj.id)
return type_str
doc = """
digraph g {
rankdir = LR
"""
for n in self.nodes:
doc += "%s [color = %s]\n" % (
short_string_obj(n['node_object']),
"red" if n['node_object'].status == 'running' else "black",
)
for from_node, to_node, label in self.edges:
doc += "%s -> %s [ label=\"%s\" ];\n" % (
short_string_obj(self.nodes[from_node]['node_object']),
short_string_obj(self.nodes[to_node]['node_object']),
label,
)
doc += "}\n"
gv_file = open('/tmp/graph.gv', 'w')
gv_file.write(doc)
gv_file.close()
def add_node(self, obj, metadata=None):
if self.find_ord(obj) is None:
self.nodes.append(dict(node_object=obj, metadata=metadata))
def add_edge(self, from_obj, to_obj, label=None):
from_obj_ord = self.find_ord(from_obj)
to_obj_ord = self.find_ord(to_obj)
if from_obj_ord is None or to_obj_ord is None:
raise LookupError("Object not found")
self.edges.append((from_obj_ord, to_obj_ord, label))
def add_edges(self, edgelist):
for edge_pair in edgelist:
self.add_edge(edge_pair[0], edge_pair[1], edge_pair[2])
def find_ord(self, obj):
for idx in range(len(self.nodes)):
if obj == self.nodes[idx]['node_object']:
return idx
return None
def get_node_type(self, obj):
if type(obj) == Job:
return "job"
elif type(obj) == AdHocCommand:
return "ad_hoc_command"
elif type(obj) == InventoryUpdate:
return "inventory_update"
elif type(obj) == ProjectUpdate:
return "project_update"
elif type(obj) == SystemJob:
return "system_job"
elif type(obj) == WorkflowJob:
return "workflow_job"
return "unknown"
def get_dependencies(self, obj, label=None):
antecedents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if node == this_ord and lbl == label:
antecedents.append(self.nodes[dep])
else:
if node == this_ord:
antecedents.append(self.nodes[dep])
return antecedents
def get_dependents(self, obj, label=None):
decendents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if dep == this_ord and lbl == label:
decendents.append(self.nodes[node])
else:
if dep == this_ord:
decendents.append(self.nodes[node])
return decendents
def get_leaf_nodes(self):
leafs = []
for n in self.nodes:
if len(self.get_dependencies(n['node_object'])) < 1:
leafs.append(n)
return leafs
def get_root_nodes(self):
roots = []
for n in self.nodes:
if len(self.get_dependents(n['node_object'])) < 1:
roots.append(n)
return roots
class WorkflowDAG(SimpleDAG):
def __init__(self, workflow_job=None):
super(WorkflowDAG, self).__init__()
if workflow_job:
self._init_graph(workflow_job)
def _init_graph(self, workflow_job):
workflow_nodes = workflow_job.workflow_job_nodes.all()
for workflow_node in workflow_nodes:
self.add_node(workflow_node)
for node_type in ['success_nodes', 'failure_nodes', 'always_nodes']:
for workflow_node in workflow_nodes:
related_nodes = getattr(workflow_node, node_type).all()
for related_node in related_nodes:
self.add_edge(workflow_node, related_node, node_type)
def bfs_nodes_to_run(self):
root_nodes = self.get_root_nodes()
nodes = root_nodes
nodes_found = []
for index, n in enumerate(nodes):
obj = n['node_object']
job = obj.job
if not job:
nodes_found.append(n)
# Job is about to run or is running. Hold our horses and wait for
# the job to finish. We can't proceed down the graph path until we
# have the job result.
elif job.status not in ['failed', 'error', 'successful']:
continue
elif job.status in ['failed', 'error']:
children_failed = self.get_dependencies(obj, 'failure_nodes')
children_always = self.get_dependencies(obj, 'always_nodes')
children_all = children_failed + children_always
nodes.extend(children_all)
elif job.status in ['successful']:
children_success = self.get_dependencies(obj, 'success_nodes')
nodes.extend(children_success)
else:
logger.warn("Incorrect graph structure")
return [n['node_object'] for n in nodes_found]
def is_workflow_done(self):
root_nodes = self.get_root_nodes()
nodes = root_nodes
for index, n in enumerate(nodes):
obj = n['node_object']
job = obj.job
if not job:
return False
# Job is about to run or is running. Hold our horses and wait for
# the job to finish. We can't proceed down the graph path until we
# have the job result.
elif job.status not in ['failed', 'error', 'successful']:
return False
elif job.status in ['failed', 'error']:
children_failed = self.get_dependencies(obj, 'failure_nodes')
children_always = self.get_dependencies(obj, 'always_nodes')
children_all = children_failed + children_always
nodes.extend(children_all)
elif job.status in ['successful']:
children_success = self.get_dependencies(obj, 'success_nodes')
nodes.extend(children_success)
else:
logger.warn("Incorrect graph structure")
return True
def get_tasks():
"""Fetch all Tower tasks that are relevant to the task management
system.
"""
RELEVANT_JOBS = ('pending', 'waiting', 'running')
# TODO: Replace this when we can grab all objects in a sane way.
graph_jobs = [j for j in Job.objects.filter(status__in=RELEVANT_JOBS)]
graph_ad_hoc_commands = [ahc for ahc in AdHocCommand.objects.filter(status__in=RELEVANT_JOBS)]
graph_inventory_updates = [iu for iu in
InventoryUpdate.objects.filter(status__in=RELEVANT_JOBS)]
graph_project_updates = [pu for pu in
ProjectUpdate.objects.filter(status__in=RELEVANT_JOBS)]
graph_system_jobs = [sj for sj in
SystemJob.objects.filter(status__in=RELEVANT_JOBS)]
graph_workflow_jobs = [wf for wf in
WorkflowJob.objects.filter(status__in=RELEVANT_JOBS)]
all_actions = sorted(graph_jobs + graph_ad_hoc_commands + graph_inventory_updates +
graph_project_updates + graph_system_jobs +
graph_workflow_jobs,
key=lambda task: task.created)
return all_actions
def get_running_workflow_jobs():
graph_workflow_jobs = [wf for wf in
WorkflowJob.objects.filter(status='running')]
return graph_workflow_jobs
def do_spawn_workflow_jobs():
workflow_jobs = get_running_workflow_jobs()
for workflow_job in workflow_jobs:
dag = WorkflowDAG(workflow_job)
spawn_nodes = dag.bfs_nodes_to_run()
for spawn_node in spawn_nodes:
# TODO: Inject job template template params as kwargs.
# Make sure to take into account extra_vars merge logic
kv = {}
job = spawn_node.unified_job_template.create_unified_job(**kv)
spawn_node.job = job
spawn_node.save()
can_start = job.signal_start(**kv)
if not can_start:
job.status = 'failed'
job.job_explanation = "Workflow job could not start because it was not in the right state or required manual credentials"
job.save(update_fields=['status', 'job_explanation'])
job.socketio_emit_status("failed")
# TODO: should we emit a status on the socket here similar to tasks.py tower_periodic_scheduler() ?
#emit_websocket_notification('/socket.io/jobs', '', dict(id=))
def rebuild_graph(message):
"""Regenerate the task graph by refreshing known tasks from Tower, purging
orphaned running tasks, and creating dependencies for new tasks before
generating directed edge relationships between those tasks.
"""
# Sanity check: Only do this on the primary node.
if Instance.objects.my_role() == 'secondary':
return None
inspector = inspect()
if not hasattr(settings, 'IGNORE_CELERY_INSPECTOR'):
active_task_queues = inspector.active()
else:
logger.warn("Ignoring celery task inspector")
active_task_queues = None
do_spawn_workflow_jobs()
all_sorted_tasks = get_tasks()
if not len(all_sorted_tasks):
return None
active_tasks = []
if active_task_queues is not None:
for queue in active_task_queues:
active_tasks += [at['id'] for at in active_task_queues[queue]]
else:
logger.error("Could not communicate with celery!")
# TODO: Something needs to be done here to signal to the system
# as a whole that celery appears to be down.
if not hasattr(settings, 'CELERY_UNIT_TEST'):
return None
running_tasks = filter(lambda t: t.status == 'running', all_sorted_tasks)
waiting_tasks = filter(lambda t: t.status != 'running', all_sorted_tasks)
new_tasks = filter(lambda t: t.status == 'pending', all_sorted_tasks)
# Check running tasks and make sure they are active in celery
logger.debug("Active celery tasks: " + str(active_tasks))
for task in list(running_tasks):
if (task.celery_task_id not in active_tasks and not hasattr(settings, 'IGNORE_CELERY_INSPECTOR')):
# NOTE: Pull status again and make sure it didn't finish in
# the meantime?
task.status = 'failed'
task.job_explanation += ' '.join((
'Task was marked as running in Tower but was not present in',
'Celery, so it has been marked as failed.',
))
task.save()
task.socketio_emit_status("failed")
running_tasks.pop(running_tasks.index(task))
logger.error("Task %s appears orphaned... marking as failed" % task)
# Create and process dependencies for new tasks
for task in new_tasks:
logger.debug("Checking dependencies for: %s" % str(task))
try:
task_dependencies = task.generate_dependencies(running_tasks + waiting_tasks)
except Exception, e:
logger.error("Failed processing dependencies for {}: {}".format(task, e))
task.status = 'failed'
task.job_explanation += 'Task failed to generate dependencies: {}'.format(e)
task.save()
task.socketio_emit_status("failed")
continue
logger.debug("New dependencies: %s" % str(task_dependencies))
for dep in task_dependencies:
# We recalculate the created time for the moment to ensure the
# dependencies are always sorted in the right order relative to
# the dependent task.
time_delt = len(task_dependencies) - task_dependencies.index(dep)
dep.created = task.created - datetime.timedelta(seconds=1 + time_delt)
dep.status = 'waiting'
dep.save()
waiting_tasks.insert(waiting_tasks.index(task), dep)
if not hasattr(settings, 'UNIT_TEST_IGNORE_TASK_WAIT'):
task.status = 'waiting'
task.save()
# Rebuild graph
graph = SimpleDAG()
for task in running_tasks:
graph.add_node(task)
for wait_task in waiting_tasks[:50]:
node_dependencies = []
for node in graph:
if wait_task.is_blocked_by(node['node_object']):
node_dependencies.append(node['node_object'])
graph.add_node(wait_task)
for dependency in node_dependencies:
graph.add_edge(wait_task, dependency)
if settings.DEBUG:
graph.generate_graphviz_plot()
return graph
def process_graph(graph, task_capacity):
"""Given a task dependency graph, start and manage tasks given their
priority and weight.
"""
leaf_nodes = graph.get_leaf_nodes()
running_nodes = filter(lambda x: x['node_object'].status == 'running', leaf_nodes)
running_impact = sum([t['node_object'].task_impact for t in running_nodes])
ready_nodes = filter(lambda x: x['node_object'].status != 'running', leaf_nodes)
remaining_volume = task_capacity - running_impact
logger.info('Running Nodes: %s; Capacity: %s; Running Impact: %s; '
'Remaining Capacity: %s' %
(str(running_nodes), str(task_capacity),
str(running_impact), str(remaining_volume)))
logger.info("Ready Nodes: %s" % str(ready_nodes))
for task_node in ready_nodes:
node_obj = task_node['node_object']
# NOTE: This could be used to pass metadata through the task system
# node_args = task_node['metadata']
impact = node_obj.task_impact
if impact <= remaining_volume or running_impact == 0:
node_dependencies = graph.get_dependents(node_obj)
# Allow other tasks to continue if a job fails, even if they are
# other jobs.
if graph.get_node_type(node_obj) == 'job':
node_dependencies = []
dependent_nodes = [{'type': graph.get_node_type(node_obj), 'id': node_obj.id}] + \
[{'type': graph.get_node_type(n['node_object']),
'id': n['node_object'].id} for n in node_dependencies]
error_handler = handle_work_error.s(subtasks=dependent_nodes)
success_handler = handle_work_success.s(task_actual={'type': graph.get_node_type(node_obj),
'id': node_obj.id})
start_status = node_obj.start(error_callback=error_handler, success_callback=success_handler)
if not start_status:
node_obj.status = 'failed'
if node_obj.job_explanation:
node_obj.job_explanation += ' '
node_obj.job_explanation += 'Task failed pre-start check.'
node_obj.save()
continue
remaining_volume -= impact
running_impact += impact
logger.info('Started Node: %s (capacity hit: %s) '
'Remaining Capacity: %s' %
(str(node_obj), str(impact), str(remaining_volume)))
def run_taskmanager():
"""Receive task start and finish signals to rebuild a dependency graph
and manage the actual running of tasks.
"""
def shutdown_handler():
def _handler(signum, frame):
signal.signal(signum, signal.SIG_DFL)
os.kill(os.getpid(), signum)
return _handler
signal.signal(signal.SIGINT, shutdown_handler())
signal.signal(signal.SIGTERM, shutdown_handler())
paused = False
task_capacity = get_system_task_capacity()
last_rebuild = datetime.datetime.fromtimestamp(0)
# Attempt to pull messages off of the task system queue into perpetuity.
#
# A quick explanation of what is happening here:
# The popping messages off the queue bit is something of a sham. We remove
# the messages from the queue and then immediately throw them away. The
# `rebuild_graph` function, while it takes the message as an argument,
# ignores it.
#
# What actually happens is that we just check the database every 10 seconds
# to see what the task dependency graph looks like, and go do that. This
# is the job of the `rebuild_graph` function.
#
# There is some placeholder here: we may choose to actually use the message
# in the future.
while True:
# Pop a message off the queue.
# (If the queue is empty, None will be returned.)
message = queue.pop()
# Parse out the message appropriately, rebuilding our graph if
# appropriate.
if (datetime.datetime.now() - last_rebuild).seconds > 10:
if message is not None and 'pause' in message:
logger.info("Pause command received: %s" % str(message))
paused = message['pause']
graph = rebuild_graph(message)
if not paused and graph is not None:
process_graph(graph, task_capacity)
last_rebuild = datetime.datetime.now()
time.sleep(0.1)
class Command(NoArgsCommand):
"""Tower Task Management System
This daemon is designed to reside between our tasks and celery and
provide a mechanism for understanding the relationship between those tasks
and their dependencies.
It also actively prevents situations in which Tower can get blocked
because it doesn't have an understanding of what is progressing through
celery.
"""
help = 'Launch the Tower task management system'
def handle_noargs(self, **options):
try:
run_taskmanager()
except KeyboardInterrupt:
pass

View File

@ -798,34 +798,43 @@ class UnifiedJob(PolymorphicModel, PasswordFieldsModel, CommonModelNameNotUnique
status=self.status,
traceback=self.result_traceback)
def start(self, error_callback, success_callback, **kwargs):
'''
Start the task running via Celery.
'''
task_class = self._get_task_class()
def pre_start(self, **kwargs):
if not self.can_start:
self.job_explanation = u'%s is not in a startable status: %s, expecting one of %s' % (self._meta.verbose_name, self.status, str(('new', 'waiting')))
self.save(update_fields=['job_explanation'])
return False
return (False, None)
needed = self.get_passwords_needed_to_start()
try:
start_args = json.loads(decrypt_field(self, 'start_args'))
except Exception:
start_args = None
if start_args in (None, ''):
start_args = kwargs
opts = dict([(field, start_args.get(field, '')) for field in needed])
if not all(opts.values()):
missing_fields = ', '.join([k for k,v in opts.items() if not v])
self.job_explanation = u'Missing needed fields: %s.' % missing_fields
self.save(update_fields=['job_explanation'])
return False
#extra_data = dict([(field, kwargs[field]) for field in kwargs
# if field not in needed])
return (False, None)
if 'extra_vars' in kwargs:
self.handle_extra_data(kwargs['extra_vars'])
task_class().apply_async((self.pk,), opts, link_error=error_callback, link=success_callback)
return True
return (True, opts)
def start(self, error_callback, success_callback, **kwargs):
'''
Start the task running via Celery.
'''
task_class = self._get_task_class()
(res, opts) = self.pre_start(**kwargs)
if res:
task_class().apply_async((self.pk,), opts, link_error=error_callback, link=success_callback)
return res
def signal_start(self, **kwargs):
"""Notify the task runner system to begin work on this task."""
@ -852,6 +861,9 @@ class UnifiedJob(PolymorphicModel, PasswordFieldsModel, CommonModelNameNotUnique
self.update_fields(start_args=json.dumps(kwargs), status='pending')
self.socketio_emit_status("pending")
from awx.main.scheduler.tasks import run_job_launch
run_job_launch.delay(self.id)
# Each type of unified job has a different Task class; get the
# appropirate one.
# task_type = get_type_for_model(self)

View File

@ -240,3 +240,11 @@ class WorkflowJob(UnifiedJob, WorkflowJobOptions, JobNotificationMixin, Workflow
def get_notification_friendly_name(self):
return "Workflow Job"
def start(self, *args, **kwargs):
(res, opts) = self.pre_start(**kwargs)
if res:
self.status = 'running'
self.save()
self.socketio_emit_status("running")
return res

View File

@ -0,0 +1,257 @@
#Copyright (c) 2015 Ansible, Inc.
# All Rights Reserved
# Python
import datetime
import logging
# Django
from django.conf import settings
from django.db import transaction
# AWX
from awx.main.models import * # noqa
from awx.main.utils import get_system_task_capacity
from awx.main.scheduler.dag_simple import SimpleDAG
from awx.main.scheduler.dag_workflow import WorkflowDAG
# Celery
from celery.task.control import inspect
logger = logging.getLogger('awx.main.scheduler')
def get_tasks():
"""Fetch all Tower tasks that are relevant to the task management
system.
"""
RELEVANT_JOBS = ('pending', 'waiting', 'running')
# TODO: Replace this when we can grab all objects in a sane way.
graph_jobs = [j for j in Job.objects.filter(status__in=RELEVANT_JOBS)]
graph_ad_hoc_commands = [ahc for ahc in AdHocCommand.objects.filter(status__in=RELEVANT_JOBS)]
graph_inventory_updates = [iu for iu in
InventoryUpdate.objects.filter(status__in=RELEVANT_JOBS)]
graph_project_updates = [pu for pu in
ProjectUpdate.objects.filter(status__in=RELEVANT_JOBS)]
graph_system_jobs = [sj for sj in
SystemJob.objects.filter(status__in=RELEVANT_JOBS)]
graph_workflow_jobs = [wf for wf in
WorkflowJob.objects.filter(status__in=RELEVANT_JOBS)]
all_actions = sorted(graph_jobs + graph_ad_hoc_commands + graph_inventory_updates +
graph_project_updates + graph_system_jobs +
graph_workflow_jobs,
key=lambda task: task.created)
return all_actions
def get_running_workflow_jobs():
graph_workflow_jobs = [wf for wf in
WorkflowJob.objects.filter(status='running')]
return graph_workflow_jobs
def spawn_workflow_graph_jobs(workflow_jobs):
# TODO: Consider using transaction.atomic
for workflow_job in workflow_jobs:
dag = WorkflowDAG(workflow_job)
spawn_nodes = dag.bfs_nodes_to_run()
for spawn_node in spawn_nodes:
# TODO: Inject job template template params as kwargs.
# Make sure to take into account extra_vars merge logic
kv = {}
job = spawn_node.unified_job_template.create_unified_job(**kv)
spawn_node.job = job
spawn_node.save()
can_start = job.signal_start(**kv)
if not can_start:
job.status = 'failed'
job.job_explanation = "Workflow job could not start because it was not in the right state or required manual credentials"
job.save(update_fields=['status', 'job_explanation'])
job.socketio_emit_status("failed")
# TODO: should we emit a status on the socket here similar to tasks.py tower_periodic_scheduler() ?
#emit_websocket_notification('/socket.io/jobs', '', dict(id=))
# See comment in tasks.py::RunWorkflowJob::run()
def process_finished_workflow_jobs(workflow_jobs):
for workflow_job in workflow_jobs:
dag = WorkflowDAG(workflow_job)
if dag.is_workflow_done():
with transaction.atomic():
# TODO: detect if wfj failed
workflow_job.status = 'completed'
workflow_job.save()
workflow_job.socketio_emit_status('completed')
def rebuild_graph():
"""Regenerate the task graph by refreshing known tasks from Tower, purging
orphaned running tasks, and creating dependencies for new tasks before
generating directed edge relationships between those tasks.
"""
'''
# Sanity check: Only do this on the primary node.
if Instance.objects.my_role() == 'secondary':
return None
'''
inspector = inspect()
if not hasattr(settings, 'IGNORE_CELERY_INSPECTOR'):
active_task_queues = inspector.active()
else:
logger.warn("Ignoring celery task inspector")
active_task_queues = None
all_sorted_tasks = get_tasks()
if not len(all_sorted_tasks):
return None
active_tasks = []
if active_task_queues is not None:
for queue in active_task_queues:
active_tasks += [at['id'] for at in active_task_queues[queue]]
else:
logger.error("Could not communicate with celery!")
# TODO: Something needs to be done here to signal to the system
# as a whole that celery appears to be down.
if not hasattr(settings, 'CELERY_UNIT_TEST'):
return None
running_tasks = filter(lambda t: t.status == 'running', all_sorted_tasks)
running_celery_tasks = filter(lambda t: type(t) != WorkflowJob, running_tasks)
waiting_tasks = filter(lambda t: t.status != 'running', all_sorted_tasks)
new_tasks = filter(lambda t: t.status == 'pending', all_sorted_tasks)
# Check running tasks and make sure they are active in celery
logger.debug("Active celery tasks: " + str(active_tasks))
for task in list(running_celery_tasks):
if (task.celery_task_id not in active_tasks and not hasattr(settings, 'IGNORE_CELERY_INSPECTOR')):
# NOTE: Pull status again and make sure it didn't finish in
# the meantime?
task.status = 'failed'
task.job_explanation += ' '.join((
'Task was marked as running in Tower but was not present in',
'Celery, so it has been marked as failed.',
))
task.save()
task.socketio_emit_status("failed")
running_tasks.pop(task)
logger.error("Task %s appears orphaned... marking as failed" % task)
# Create and process dependencies for new tasks
for task in new_tasks:
logger.debug("Checking dependencies for: %s" % str(task))
try:
task_dependencies = task.generate_dependencies(running_tasks + waiting_tasks)
except Exception, e:
logger.error("Failed processing dependencies for {}: {}".format(task, e))
task.status = 'failed'
task.job_explanation += 'Task failed to generate dependencies: {}'.format(e)
task.save()
task.socketio_emit_status("failed")
continue
logger.debug("New dependencies: %s" % str(task_dependencies))
for dep in task_dependencies:
# We recalculate the created time for the moment to ensure the
# dependencies are always sorted in the right order relative to
# the dependent task.
time_delt = len(task_dependencies) - task_dependencies.index(dep)
dep.created = task.created - datetime.timedelta(seconds=1 + time_delt)
dep.status = 'waiting'
dep.save()
waiting_tasks.insert(waiting_tasks.index(task), dep)
if not hasattr(settings, 'UNIT_TEST_IGNORE_TASK_WAIT'):
task.status = 'waiting'
task.save()
# Rebuild graph
graph = SimpleDAG()
for task in running_tasks:
graph.add_node(task)
for wait_task in waiting_tasks[:50]:
node_dependencies = []
for node in graph:
if wait_task.is_blocked_by(node['node_object']):
node_dependencies.append(node['node_object'])
graph.add_node(wait_task)
for dependency in node_dependencies:
graph.add_edge(wait_task, dependency)
if settings.DEBUG:
graph.generate_graphviz_plot()
return graph
def process_graph(graph, task_capacity):
"""Given a task dependency graph, start and manage tasks given their
priority and weight.
"""
from awx.main.tasks import handle_work_error, handle_work_success
leaf_nodes = graph.get_leaf_nodes()
running_nodes = filter(lambda x: x['node_object'].status == 'running', leaf_nodes)
running_impact = sum([t['node_object'].task_impact for t in running_nodes])
ready_nodes = filter(lambda x: x['node_object'].status != 'running', leaf_nodes)
remaining_volume = task_capacity - running_impact
logger.info('Running Nodes: %s; Capacity: %s; Running Impact: %s; '
'Remaining Capacity: %s' %
(str(running_nodes), str(task_capacity),
str(running_impact), str(remaining_volume)))
logger.info("Ready Nodes: %s" % str(ready_nodes))
for task_node in ready_nodes:
node_obj = task_node['node_object']
# NOTE: This could be used to pass metadata through the task system
# node_args = task_node['metadata']
impact = node_obj.task_impact
if impact <= remaining_volume or running_impact == 0:
node_dependencies = graph.get_dependents(node_obj)
# Allow other tasks to continue if a job fails, even if they are
# other jobs.
node_type = graph.get_node_type(node_obj)
if node_type == 'job':
# clear dependencies because a job can block (not necessarily
# depend) on other jobs that share the same job template
node_dependencies = []
# Make the workflow_job look like it's started by setting status to
# running, but don't make a celery Task for it.
# Introduce jobs from the workflow so they are candidates to run.
# Call process_graph() again to allow choosing for run, the
# created candidate jobs.
elif node_type == 'workflow_job':
node_obj.start()
spawn_workflow_graph_jobs([node_obj])
return process_graph(graph, task_capacity)
dependent_nodes = [{'type': graph.get_node_type(node_obj), 'id': node_obj.id}] + \
[{'type': graph.get_node_type(n['node_object']),
'id': n['node_object'].id} for n in node_dependencies]
error_handler = handle_work_error.s(subtasks=dependent_nodes)
success_handler = handle_work_success.s(task_actual={'type': graph.get_node_type(node_obj),
'id': node_obj.id})
with transaction.atomic():
start_status = node_obj.start(error_callback=error_handler, success_callback=success_handler)
if not start_status:
node_obj.status = 'failed'
if node_obj.job_explanation:
node_obj.job_explanation += ' '
node_obj.job_explanation += 'Task failed pre-start check.'
node_obj.save()
continue
remaining_volume -= impact
running_impact += impact
logger.info('Started Node: %s (capacity hit: %s) '
'Remaining Capacity: %s' %
(str(node_obj), str(impact), str(remaining_volume)))
def schedule():
with transaction.atomic():
# Lock
Instance.objects.select_for_update().all()[0]
task_capacity = get_system_task_capacity()
workflow_jobs = get_running_workflow_jobs()
process_finished_workflow_jobs(workflow_jobs)
spawn_workflow_graph_jobs(workflow_jobs)
graph = rebuild_graph()
if graph:
process_graph(graph, task_capacity)
# Unlock, due to transaction ending

View File

@ -0,0 +1,140 @@
from awx.main.models import (
Job,
AdHocCommand,
InventoryUpdate,
ProjectUpdate,
WorkflowJob,
SystemJob,
)
class SimpleDAG(object):
''' A simple implementation of a directed acyclic graph '''
def __init__(self):
self.nodes = []
self.edges = []
def __contains__(self, obj):
for node in self.nodes:
if node['node_object'] == obj:
return True
return False
def __len__(self):
return len(self.nodes)
def __iter__(self):
return self.nodes.__iter__()
def generate_graphviz_plot(self):
def short_string_obj(obj):
if type(obj) == Job:
type_str = "Job"
if type(obj) == AdHocCommand:
type_str = "AdHocCommand"
elif type(obj) == InventoryUpdate:
type_str = "Inventory"
elif type(obj) == ProjectUpdate:
type_str = "Project"
elif type(obj) == WorkflowJob:
type_str = "Workflow"
else:
type_str = "Unknown"
type_str += "%s" % str(obj.id)
return type_str
doc = """
digraph g {
rankdir = LR
"""
for n in self.nodes:
doc += "%s [color = %s]\n" % (
short_string_obj(n['node_object']),
"red" if n['node_object'].status == 'running' else "black",
)
for from_node, to_node, label in self.edges:
doc += "%s -> %s [ label=\"%s\" ];\n" % (
short_string_obj(self.nodes[from_node]['node_object']),
short_string_obj(self.nodes[to_node]['node_object']),
label,
)
doc += "}\n"
gv_file = open('/tmp/graph.gv', 'w')
gv_file.write(doc)
gv_file.close()
def add_node(self, obj, metadata=None):
if self.find_ord(obj) is None:
self.nodes.append(dict(node_object=obj, metadata=metadata))
def add_edge(self, from_obj, to_obj, label=None):
from_obj_ord = self.find_ord(from_obj)
to_obj_ord = self.find_ord(to_obj)
if from_obj_ord is None or to_obj_ord is None:
raise LookupError("Object not found")
self.edges.append((from_obj_ord, to_obj_ord, label))
def add_edges(self, edgelist):
for edge_pair in edgelist:
self.add_edge(edge_pair[0], edge_pair[1], edge_pair[2])
def find_ord(self, obj):
for idx in range(len(self.nodes)):
if obj == self.nodes[idx]['node_object']:
return idx
return None
def get_node_type(self, obj):
if type(obj) == Job:
return "job"
elif type(obj) == AdHocCommand:
return "ad_hoc_command"
elif type(obj) == InventoryUpdate:
return "inventory_update"
elif type(obj) == ProjectUpdate:
return "project_update"
elif type(obj) == SystemJob:
return "system_job"
elif type(obj) == WorkflowJob:
return "workflow_job"
return "unknown"
def get_dependencies(self, obj, label=None):
antecedents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if node == this_ord and lbl == label:
antecedents.append(self.nodes[dep])
else:
if node == this_ord:
antecedents.append(self.nodes[dep])
return antecedents
def get_dependents(self, obj, label=None):
decendents = []
this_ord = self.find_ord(obj)
for node, dep, lbl in self.edges:
if label:
if dep == this_ord and lbl == label:
decendents.append(self.nodes[node])
else:
if dep == this_ord:
decendents.append(self.nodes[node])
return decendents
def get_leaf_nodes(self):
leafs = []
for n in self.nodes:
if len(self.get_dependencies(n['node_object'])) < 1:
leafs.append(n)
return leafs
def get_root_nodes(self):
roots = []
for n in self.nodes:
if len(self.get_dependents(n['node_object'])) < 1:
roots.append(n)
return roots

View File

@ -0,0 +1,72 @@
# AWX
from awx.main.scheduler.dag_simple import SimpleDAG
class WorkflowDAG(SimpleDAG):
def __init__(self, workflow_job=None):
super(WorkflowDAG, self).__init__()
if workflow_job:
self._init_graph(workflow_job)
def _init_graph(self, workflow_job):
workflow_nodes = workflow_job.workflow_job_nodes.all()
for workflow_node in workflow_nodes:
self.add_node(workflow_node)
for node_type in ['success_nodes', 'failure_nodes', 'always_nodes']:
for workflow_node in workflow_nodes:
related_nodes = getattr(workflow_node, node_type).all()
for related_node in related_nodes:
self.add_edge(workflow_node, related_node, node_type)
def bfs_nodes_to_run(self):
root_nodes = self.get_root_nodes()
nodes = root_nodes
nodes_found = []
for index, n in enumerate(nodes):
obj = n['node_object']
job = obj.job
if not job:
nodes_found.append(n)
# Job is about to run or is running. Hold our horses and wait for
# the job to finish. We can't proceed down the graph path until we
# have the job result.
elif job.status not in ['failed', 'error', 'successful']:
continue
elif job.status in ['failed', 'error']:
children_failed = self.get_dependencies(obj, 'failure_nodes')
children_always = self.get_dependencies(obj, 'always_nodes')
children_all = children_failed + children_always
nodes.extend(children_all)
elif job.status in ['successful']:
children_success = self.get_dependencies(obj, 'success_nodes')
nodes.extend(children_success)
return [n['node_object'] for n in nodes_found]
def is_workflow_done(self):
root_nodes = self.get_root_nodes()
nodes = root_nodes
for index, n in enumerate(nodes):
obj = n['node_object']
job = obj.job
if not job:
return False
# Job is about to run or is running. Hold our horses and wait for
# the job to finish. We can't proceed down the graph path until we
# have the job result.
elif job.status not in ['failed', 'error', 'successful']:
return False
elif job.status in ['failed', 'error']:
children_failed = self.get_dependencies(obj, 'failure_nodes')
children_always = self.get_dependencies(obj, 'always_nodes')
children_all = children_failed + children_always
nodes.extend(children_all)
elif job.status in ['successful']:
children_success = self.get_dependencies(obj, 'success_nodes')
nodes.extend(children_success)
return True

View File

@ -0,0 +1,79 @@
# Python
import logging
import time
# Celery
from celery import task
# AWX
from awx.main.models import UnifiedJob
from awx.main.scheduler import schedule
logger = logging.getLogger('awx.main.scheduler')
# TODO: move logic to UnifiedJob model and use bind=True feature of celery.
# Would we need the request loop then? I think so. Even if we get the in-memory
# updated model, the call to schedule() may get stale data.
@task
def run_job_launch(job_id):
# Wait for job to exist.
# The job is created in a transaction then the message is created, but
# the transaction may not have completed.
# FIXME: We could generate the message in a Django signal handler.
# OR, we could call an explicit commit in the view and then send the
# message.
retries = 10
retry = 0
while not UnifiedJob.objects.filter(id=job_id).exists():
time.sleep(0.3)
if retry >= retries:
logger.error("Failed to process 'job_launch' message for job %d" % job_id)
# ack the message so we don't build up the queue.
#
# The job can still be chosen to run during tower startup or
# when another job is started or completes
return
retry += 1
# "Safe" to get the job now since it exists.
# Really, there is a race condition from exists to get
# TODO: while not loop should call get wrapped in a try except
#job = UnifiedJob.objects.get(id=job_id)
schedule()
@task
def run_job_complete(job_id):
# TODO: use list of finished status from jobs.py or unified_jobs.py
finished_status = ['successful', 'error', 'failed', 'completed']
q = UnifiedJob.objects.filter(id=job_id)
# Ensure that the job is updated in the database before we call to
# schedule the next job.
retries = 10
retry = 0
while True:
# Job not found, most likely deleted. That's fine
if not q.exists():
logger.warn("Failed to find job '%d' while processing 'job_complete' message. Presume that it was deleted." % job_id)
break
job = q[0]
if job.status in finished_status:
break
time.sleep(0.3)
if retry >= retries:
logger.error("Expected job status '%s' to be one of '%s' while processing 'job_complete' message." % (job.status, finished_status))
return
retry += 1
schedule()

View File

@ -47,7 +47,6 @@ from django.contrib.auth.models import User
from awx.main.constants import CLOUD_PROVIDERS
from awx.main.models import * # noqa
from awx.main.models import UnifiedJob
from awx.main.queue import FifoQueue
from awx.main.task_engine import TaskEnhancer
from awx.main.utils import (get_ansible_version, get_ssh_version, decrypt_field, update_scm_url,
emit_websocket_notification,
@ -57,7 +56,7 @@ __all__ = ['RunJob', 'RunSystemJob', 'RunProjectUpdate', 'RunInventoryUpdate',
'RunAdHocCommand', 'RunWorkflowJob', 'handle_work_error',
'handle_work_success', 'update_inventory_computed_fields',
'send_notifications', 'run_administrative_checks',
'run_workflow_job']
'RunJobLaunch']
HIDDEN_PASSWORD = '**********'
@ -177,14 +176,6 @@ def tower_periodic_scheduler(self):
new_unified_job.socketio_emit_status("failed")
emit_websocket_notification('/socket.io/schedules', 'schedule_changed', dict(id=schedule.id))
@task(queue='default')
def notify_task_runner(metadata_dict):
"""Add the given task into the Tower task manager's queue, to be consumed
by the task system.
"""
queue = FifoQueue('tower_task_manager')
queue.push(metadata_dict)
def _send_notification_templates(instance, status_str):
if status_str not in ['succeeded', 'failed']:
raise ValueError("status_str must be either succeeded or failed")
@ -200,6 +191,7 @@ def _send_notification_templates(instance, status_str):
for n in all_notification_templates],
job_id=instance.id)
@task(bind=True, queue='default')
def handle_work_success(self, result, task_actual):
instance = UnifiedJob.get_instance_by_type(task_actual['type'], task_actual['id'])
@ -208,6 +200,9 @@ def handle_work_success(self, result, task_actual):
_send_notification_templates(instance, 'succeeded')
from awx.main.scheduler.tasks import run_job_complete
run_job_complete.delay(instance.id)
@task(bind=True, queue='default')
def handle_work_error(self, task_id, subtasks=None):
print('Executing error task id %s, subtasks: %s' %
@ -236,6 +231,15 @@ def handle_work_error(self, task_id, subtasks=None):
if first_instance:
_send_notification_templates(first_instance, 'failed')
# We only send 1 job complete message since all the job completion message
# handling does is trigger the scheduler. If we extend the functionality of
# what the job complete message handler does then we may want to send a
# completion event for each job here.
if first_instance:
from awx.main.scheduler.tasks import run_job_complete
run_job_complete.delay(first_instance.id)
pass
@task(queue='default')
def update_inventory_computed_fields(inventory_id, should_update_hosts=True):
@ -301,10 +305,6 @@ class BaseTask(Task):
logger.error('Failed to update %s after %d retries.',
self.model._meta.object_name, _attempt)
def signal_finished(self, pk):
pass
# notify_task_runner(dict(complete=pk))
def get_path_to(self, *args):
'''
Return absolute path relative to this file.
@ -1662,21 +1662,30 @@ class RunSystemJob(BaseTask):
def build_cwd(self, instance, **kwargs):
return settings.BASE_DIR
'''
class RunWorkflowJob(BaseTask):
name = 'awx.main.tasks.run_workflow_job'
model = WorkflowJob
def run(self, pk, **kwargs):
from awx.main.management.commands.run_task_system import WorkflowDAG
'''
Run the job/task and capture its output.
'''
pass
#Run the job/task and capture its output.
instance = self.update_model(pk, status='running', celery_task_id=self.request.id)
instance.socketio_emit_status("running")
# FIXME: Detect workflow run completion
# FIXME: Currently, the workflow job busy waits until the graph run is
# complete. Instead, the workflow job should return or never even run,
# because all of the "launch logic" can be done schedule().
# However, other aspects of our system depend on a 1-1 relationship
# between a Job and a Celery Task.
#
# * If we let the workflow job task (RunWorkflowJob.run()) complete
# then how do we trigger the handle_work_error and
# handle_work_success subtasks?
#
# * How do we handle the recovery process? (i.e. there is an entry in
# the database but not in celery).
while True:
dag = WorkflowDAG(instance)
if dag.is_workflow_done():
@ -1686,4 +1695,4 @@ class RunWorkflowJob(BaseTask):
time.sleep(1)
instance.socketio_emit_status(instance.status)
# TODO: Handle cancel
'''

View File

@ -12,7 +12,6 @@ import sys
import tempfile
import time
import urllib
from multiprocessing import Process
import re
import mock
@ -30,7 +29,6 @@ from django.utils.encoding import force_text
# AWX
from awx.main.models import * # noqa
from awx.main.management.commands.run_task_system import run_taskmanager
from awx.main.task_engine import TaskEnhancer
from awx.main.utils import get_ansible_version
from awx.sso.backends import LDAPSettings
@ -644,18 +642,6 @@ class BaseTestMixin(MockCommonlySlowTestMixin):
u'expected no traceback, got:\n%s' %
job.result_traceback)
def start_taskmanager(self, command_port):
self.start_redis()
self.taskmanager_process = Process(target=run_taskmanager,
args=(command_port,))
self.taskmanager_process.start()
def terminate_taskmanager(self):
if hasattr(self, 'taskmanager_process'):
self.taskmanager_process.terminate()
self.stop_redis()
class BaseTest(BaseTestMixin, django.test.TestCase):
'''
Base class for unit tests.

View File

@ -1,10 +1,12 @@
from awx.main.management.commands.run_task_system import (
SimpleDAG,
WorkflowDAG,
)
# Python
import pytest
# AWX
from awx.main.scheduler.dag_simple import SimpleDAG
from awx.main.scheduler.dag_workflow import WorkflowDAG
from awx.main.models import Job
from awx.main.models.workflow import WorkflowJobNode
import pytest
@pytest.fixture
def dag_root():

View File

@ -348,9 +348,11 @@ CELERYD_TASK_SOFT_TIME_LIMIT = None
CELERYBEAT_SCHEDULER = 'celery.beat.PersistentScheduler'
CELERYBEAT_MAX_LOOP_INTERVAL = 60
CELERY_RESULT_BACKEND = 'djcelery.backends.database:DatabaseBackend'
CELERY_IMPORTS = ('awx.main.scheduler.tasks',)
CELERY_QUEUES = (
Queue('default', Exchange('default'), routing_key='default'),
Queue('jobs', Exchange('jobs'), routing_key='jobs'),
Queue('scheduler', Exchange('scheduler', type='topic'), routing_key='scheduler.job.#', durable=False),
# Projects use a fanout queue, this isn't super well supported
Broadcast('projects'),
)
@ -362,8 +364,12 @@ CELERY_ROUTES = ({'awx.main.tasks.run_job': {'queue': 'jobs',
'awx.main.tasks.run_ad_hoc_command': {'queue': 'jobs',
'routing_key': 'jobs'},
'awx.main.tasks.run_system_job': {'queue': 'jobs',
'routing_key': 'jobs'}})
'routing_key': 'jobs'},
'awx.main.scheduler.tasks.run_job_launch': {'queue': 'scheduler',
'routing_key': 'scheduler.job.launch'},
'awx.main.scheduler.tasks.run_job_complete': {'queue': 'scheduler',
'routing_key': 'scheduler.job.complete'},})
CELERYBEAT_SCHEDULE = {
'tower_scheduler': {
'task': 'awx.main.tasks.tower_periodic_scheduler',
@ -755,6 +761,7 @@ ACTIVITY_STREAM_ENABLED_FOR_INVENTORY_SYNC = False
INTERNAL_API_URL = 'http://127.0.0.1:%s' % DEVSERVER_DEFAULT_PORT
CALLBACK_QUEUE = "callback_tasks"
SCHEDULER_QUEUE = "scheduler"
TASK_COMMAND_PORT = 6559
@ -917,7 +924,11 @@ LOGGING = {
'handlers': ['console', 'file', 'socketio_service'],
'propagate': False
},
'awx.main.commands.run_task_system': {
'awx.main.tasks': {
'handlers': ['console', 'file', 'task_system'],
'propagate': False
},
'awx.main.scheduler': {
'handlers': ['console', 'file', 'task_system'],
'propagate': False
},